打开APP

David Baker团队开发新型AI蛋白设计模型——LigandMPNN,实现原子上下文条件蛋白序列设计

研究团队开发了一种新型深度学习方法——LigandMPNN,该方法明确地对生物分子系统中的所有非蛋白质成分进行了建模。

2025-04-01

Science:新研究成功破解细胞防止新生的蛋白质过早释放之谜

发现结果颠覆了公认的教科书解释:合适位置根本不存在水分子来断裂键合。相反,释放因子促使tRNA发生形变,充分释放其隐藏化学潜能——tRNA的一小部分会延伸并自行断裂键合,将成品蛋白质从核糖体释放。

2025-08-25

Science:利用新的蛋白质图谱技术揭示细胞的内部工作原理

这项研究标志着单细胞生物学的转折点:能够在原代人类组织中以单细胞分辨率直接测量蛋白质。它开启了发现发育、疾病和再生过程中隐藏调控层面的大门——这些是仅靠RNA永远无法揭示的层面。

2025-08-29

Science:构建一个“进化引擎”来快速重新编程蛋白

T7-ORACLE通过改造大肠杆菌(分子生物学标准模式生物)解决了这些瓶颈,使其搭载第二个源自噬菌体T7的人工DNA复制系统。

2025-08-27

Cell重磅:AI从头设计生成小型结合蛋白,大幅提高先导编辑效率

在这项最新研究中,研究团队利用 RFdiffusion 来抑制错配修复(MMR)通路,从而提高先导编辑(PE)效率。

2025-08-07

Science:AI造“钥匙”,精准开锁癌细胞:深度学习开启蛋白设计新纪元

研究团队展示了一种颠覆性的策略,利用生成式人工智能(Generative AI)从零开始设计全新的蛋白质,这些蛋白质能像高精度的“分子巡警”,精准识别并锁定癌细胞或病毒感染细胞表面的独特“身份证”。

2025-08-03

Cell重磅:AI从头设计微型蛋白调控钠通道,逆转心律失常和癫痫

该研究首次通过人工智能(AI)从头设计出特异性靶向 NaV1.5 的微型调控蛋白——ELIXIR,可精准修复钠离子通道功能障碍,逆转相关心律失常和癫痫。

2025-08-23

Science:新的成像方法显示核糖体簇专门用于蛋白质生产

研究详细介绍了两种以单核糖体分辨率绘制其定位与行为的新方法——这是前所未有的突破。

2025-08-25

Science:利用开源计算工具预测由蛋白无序区域驱动的分子间相互作用

该工具分析了蛋白质构建单元(称为氨基酸)的化学相互作用,并预测无序蛋白质的哪些部分会对体内的其他分子产生吸引力或排斥力。

2025-09-29