打开APP

小麦穗型形成的遗传基础解析研究取得进展

小麦(Triticum aestivum L.)作为一种重要的粮食作物,为全世界人口提供了约20%的能量摄入和重要的蛋白质来源。我国是小麦生产和消费大国,培育高产小麦品种、不断提高小麦产量是保障我国粮食安全的重要措施之一。穗长和穗密度作为重要的穗相关性状,与产量密切相关。因此,鉴定、验证和克隆穗长和穗密度相关的数量性状位点(QTL)或基因对解析它们的遗传机制

2021-08-08

中山医学院丁俊军教授团队系统绘制相分离溶解与重建过程的染色质三维结构图谱

细胞内广泛存在相分离(Phase Separation)现象,成千上万的蛋白或核酸分子在复杂的细胞内部形成一个一个无膜“隔间”,就像油滴在水中一样,彼此互不干扰地参与细胞内如转录调控、应激、蛋白质质量控制、DNA复制等多种重要的生物学过程。1,6-己二醇(1,6-HD)是一种能够使得相分离液滴溶解的化学小分子,它是目前唯一的能同时破坏多种相的工具,所以非常有

2021-09-03

PLoS Genetics:研究揭示菜粉蝶感受甘蓝中黑芥子苷的味觉分子基础

   植物中数量庞大且结构复杂的次生物质构成每种植物的独特味道,这些次生物质大多对植食性昆虫具有防御作用,阻碍昆虫的取食。然而,有的昆虫非但不受其影响,反而把它们作为识别寄主植物的标志刺激物。取食十字花科植物的多种专食性昆虫就是如此。菜粉蝶(Pieris rapae)是一种世界性的重要农业害虫,嗜食百姓日常食用的甘蓝、花椰菜、油

2021-07-27

服务“两区”建设,昌发展国际精准医学加速中心即将亮相生命科学园

近日,北京市发布医药健康协同创新行动计划(2021—2023年)明确提出,“发挥昌平区对前沿技术突破和颠覆性技术创新项目的孵化作用”,“推动原创成果与技术向产业的转化”。为促进“产、学、研、医”紧密协同,加速临床与产业深度融合,推动医药健康产业高质量发展,昌发展于生命科学园核心位置打造国际精准医学加速中心。据相关专业人士介绍,该中心的落成将完善生命科学产业研

2021-08-06

燃石医学与英派药业达成合成致死药物研发管线全球伴随诊断战略合作

【2021年8月3日,上海】燃石医学(纳斯达克代码:BNR)与英派药业宣布达成合成致死药物研发管线伴随诊断的全球合作,双方将携手进行开发抗肿瘤靶向药物PARP抑制剂Senaparib(IMP4297)用于全球范围内前列腺癌治疗的伴随诊断(CDx)合作。同时,双方在合成致死药物研发管线的生物标志物探索和发现方面达成深度战略合作。  Senaparib是英派药业

2021-08-03

研究揭示汉字书写能力自我意识的脑神经基础

  “你觉得你自己字写得怎么样?”。当我们在回答这个问题的时候,需要对自己的书写能力进行评估,而这种估计的准确性依赖个体的自我意识,即元认知能力。元认知是一种反省与控制认知加工的能力,对日常活动起到重要的调控作用。以往研究考察了人类知觉和记忆元认知的脑机制,但对运动技能,尤其是高度熟练的运动技能的元认知及其神经基础缺乏了解。汉字书写是一项

2021-07-19

生命科学和医学学部36人

2021年中国科学院院士增选通信评审工作已经结束。根据《中国科学院院士章程》和《中国科学院院士增选工作实施细则》的规定,现将初步候选人名单予以公布。中国科学院  2021年8月1日  共191位候选人进入第二轮评审,其中生命科学和医学学部36人。1、性别统计:男性32人,女性4人,男性占比为88.89%;2、年龄统计:年龄最大的是66岁,最小的是43岁,平均

2021-08-02

医学领域取得一系列研究进展

  上海交通大学氢科学中心在“氢能源、氢医学和氢农学”三个研究方向上携手并进、协同发展。氢气既是一种清洁绿色能源,又是一种被证实的、安全且有效的医用气体,在炎症相关疾病展现出明显的抗炎效应,还是一种清洁高效的农用气体,在农作物抗逆、增产、保鲜等方面具有显着的生物学效应。氢能源、氢医学和氢农学存在共性科学问题:氢分子的高效存储、安全递送、可

2021-07-19

精鼎医药携手中国医学科学院肿瘤医院建立临床开发创新合作:以患者为中心,提升临床试验的可及性和效率

2021年8月4日,精鼎医药(Parexel),一家领先的、致力于开发和提供创新疗法,以改善人类健康的跨国临床研究组织(CRO),今日宣布将与中国医学科学院肿瘤医院开展一项创新合作,旨在推动“以患者为中心”的临床试验方案设计和分散式临床试验模式。此外,双方还将合作开展定量研究,探索如何更好地提升肿瘤患者的临床试验体验。

2021-08-04

Nature Plants:研究揭示绿藻光合作用状态转换调控的超分子结构基础

  绿藻是水体和土壤中常见的光合生物,作为有机物的原初生产者在生态系统中发挥重要作用。它们具有和植物相似的两个光系统——光系统I(PSI)和光系统II(PSII),通过捕光复合物I和II(LHCI和LHCII)吸收光能并将能量传递给两个光系统,完成光驱动的电子传递和能量转换过程。在光照条件多变的自然环境中,光能在两个光系统之间的分配可能不

2021-07-10