打开APP

Journal of Genetics and Genomics:利用基因组编辑技术提高小麦氮素利用效率和产量

  小麦为全球人口提供主粮,小麦增产可缓解人口增长带来的粮食危机。氮元素作为植物生长发育所必需的一类营养元素,是制约农作物产量的重要因素。对作物氮素利用关键调控基因进行靶向编辑,是改良作物产量的有效策略。前期研究发现,水稻ARE1基因是调控氮素利用效率和产量的关键基因。ARE1基因在植物中高度保守,研究人员推测,对其他作物中ARE1基因的

2021-08-05

现代人仅7%基因组不同于其他早期人类

  究竟什么让智人与众不同,进化成为如今的现代人?美国一项研究显示,答案可能存在于仅占人类基因组7%的特有遗传物质。据美联社17日报道,加利福尼亚大学圣克鲁斯分校研究人员比较现代人的基因与已经灭绝的其他人类基因得出上述结论,研究报告刊载于最新出版的美国《科学进展》杂志。研究涉及的基因样本来自世界各地的279人,以及从尼安德特人和丹尼索瓦人

2021-07-19

NeuExcell Therapeutics 和 Spark Therapeutics 宣布达成研究合作协议,为亨廷顿舞蹈症开发新型基因疗法

 2021 年 9月 7 日,NeuExcell Therapeutics 和 罗氏集团子公司Spark Therapeutics (RO、ROG;OTCQX;RHHBY)宣布了一项基因治疗合作协议,旨在为亨廷顿舞蹈症(HD)患者开发一种安全有效的治疗方法。

2021-09-07

Nature Genetics:茶树单体型基因组组装揭示茶树的演化史

  由福建农林大学、中国农业科学院(深圳)农业基因组研究所等多家单位共同合作在国际顶级期刊Nature Genetics上发表“Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia s

2021-08-12

新冠肺炎中和抗体联合疗法III期研究完成入

8月5日,腾盛博药宣布其单克隆中和抗体BRII-196/BRII-198联合疗法III期ACTIV-2研究已在美国、巴西、南非、墨西哥和阿根廷的研究中心完成846位受试者的入组工作。ACTIV-2研究由美国国立卫生研究院(NIH)下属的国家过敏和传染病研究所(NIAID)资助,对新型冠状病毒肺炎(COVID-19)感染的早期(首发症状后5天内)和晚期(首发症

2021-08-08

首次揭示蛋白BANP与基因组的CGCG基序结合,从而激活必需基因表达

2021年7月19日讯/生物谷BIOON/---称为转录因子的蛋白质作为开关,调节附近基因的表达,但是这些基因开关的一些身份迄今仍然是神秘的。如今,瑞士弗雷德里克-米歇尔生物医学研究所的Dirk Schübeler博士及其团队鉴定出一种新的开关,它可以调控小鼠和人类基因组中的必需基因。识别缺失的基因开关及其功能对于全面了解健康和疾病的分子基础至关重要。相关研

2021-07-19

Nature Communications:研究阐释疱疹病毒基因组包装、稳定及释放过程的“压力感应和调控”分子机制

人巨细胞病毒(human cytomegalovirus, HCMV)属于疱疹病毒科β亚家族,是一种在人类中广泛传播的双链DNA包膜病毒。HCMV感染会给免疫能力低下的人群(如器官移植患者或艾滋病人)带来致命危害,此外,还会引发胎儿死亡和新生儿出身缺陷等后果。HCMV具有典型的疱疹病毒三层架构:最外层是含有糖蛋白的脂质双分子层包膜(envelope),最内层

2021-08-01

Stem Cells:科学家发现TRPV4基因或能调节机体软骨的生长 有望未来帮助开发关节修复的新型疗法

来自华盛顿大学等机构的科学家们通过研究或有望开发治疗骨关节炎和其它软骨疾病,以及影响软骨发育的遗传性疾病的新型疗法,相关研究结果还有望帮助开发新方法来加速用于制造生物工程化软骨的干细胞分化。

2021-08-28

Nature Communications:百岁兰基因组和适应性进化机制研究取得进展

百岁兰(Welwitschia mirabilis)又名千岁兰,是买麻藤类单种科百岁兰科孑遗植物,系裸子植物中唯一的草状木本,是罕见的植物。化石记录百岁兰曾广泛分布在巴西、葡萄牙等地。随着大陆板块分裂,气候骤变,自然居群幸存于如今的安哥拉与纳米比亚沙漠。百岁兰是《濒危野生动植物种国际贸易公约》(CITES)附录Ⅱ保护植物,被国际植物学会列为世界八大珍稀植物之

2021-07-14

CRISPR先驱张锋利用人类蛋白质开发出新型mRNA递送平台,助推基因疗法开发

2021年8月20日讯/生物谷BIOON/---在一项新的研究中,来自美国麻省理工学院、麦戈文脑科学硏究所、霍华德-休斯医学研究所和布罗德研究所的研究人员开发出一种向细胞递送分子药物的平台。该平台被称为SEND,可以经编程后封装和递送不同的RNA货物。SEND利用体内的天然蛋白质形成类似病毒的颗粒并结合RNA,而且它可能比其他递送方式引起的免疫反应更少。相关

2021-08-20