关于相分离通过调控染色质三维结构重组促进细胞命运转变的研究在Cell Stem Cell发表
真核细胞染色体通常会有序的折叠,在空间上会形成有序的三维结构。这些三维结构由大到小主要分为区室分隔(compartments)、拓扑相关结构域(Topological-Associated Domains,TADs)以及染色质环状结构(loops)等。细胞命运转变过程中往往伴随着染色体三维结构的剧烈变化,而这些变化对于推动细胞命运转变的进行起到重要作用。TA
Nat Commun:揭秘表观遗传修饰驱动B细胞命运的分子机理
2021年5月16日 讯 /生物谷BIOON/ --B细胞的B1和B2谱系会以不同的方式来保护机体抵御病原体的侵袭,目前研究人员并不清楚DNA CpG的甲基化组在指定上述两种B细胞命运上所扮演的重要角色;近日,一篇发表在国际杂志Nature Communications上题为“B1a and B2 cells are characterized by dis
Science子刊:揭示DC-SCRIPT控制cDC1树突细胞的命运和功能
2021年4月6日讯/生物谷BIOON/---树突细胞(DC, 也译为树突状细胞)的功能多样化是建立保护性免疫反应的关键步骤。尽管DC谱系的多样性很重要,但其遗传基础还不完全清楚。转录因子DC-SCRIPT在经典DC(conventional DC, cDC)及其定向骨髓祖细胞中表达,但在浆细胞样DC(plasmacytoid DC, pDC)中不表达。cD
Devel Cell:科学家有望阐明胚胎干细胞的命运
2021年3月11日 讯 /生物谷BIOON/ --近日,一项刊登在国际杂志Developmental Cell上的研究报告中,来自加利福尼亚大学等机构的科学家们通过研究阐明了胚胎干细胞的命运;研究者表示,我们都知道,你必须打破几个鸡蛋才能够培育出鸡干细胞,如今他们能够成功维持鸡蛋中的胚胎干细胞(ESC,embryonic stem cells),相关研究结
研究发现ROS激发的蛋白质相分离控制植物干细胞命运
约24-38亿年前,地球开始产生氧气,大气层由厌氧环境逐渐转变为富氧环境,自然选择促进了耗氧生物的生存优势和生命演化。耗氧代谢增加了多细胞生物的能量代谢效率,但高频的电子传递和能量转换产生化学性质活泼、具有高度氧化力的活性氧分子(Reactive Oxygen Species, ROS),包括超氧阴离子(O2·-)、过氧化氢(H2O2
我的命运我主宰,而细胞中的RNA分子也是如此
2020年12月18日讯/生物谷BIOON/---在人体的任何时刻,在大约30万亿个细胞中,DNA正在被“读取”成信使RNA(mRNA)分子,这是DNA和蛋白之间的中间步骤,这一过程被称为转录。科学家们对转录是如何开始的有了很好的了解:称为RNA聚合酶的蛋白被招募到DNA分子的特定区域,并开始沿DNA链移动,边走边合成mRNA分子。但是,这个过程的一部分还不
同呼吸,共命运:2020第二届中国医师公益大会在京顺利举行
10月31日,2020第二届中国医师公益大会在北京饭店隆重举行。本次大会由中国农工民主党中央指导和支持,中国初级卫生保健基金会、北京康盟慈善基金会、北京生命绿洲公益服务中心联合主办。
研究发现植物干细胞命运决定新机制
固着生长的高等植物能够不断调整器官发生和发育进程,从而适应复杂多变的环境条件。与动物相比,植物的生长发育表现超强的可塑性,这主要取决于其干细胞组织结构。以模式植物拟南芥根尖分生组织为例,干细胞组织中心(静止中心,Quiescent center,QC)与其周围干细胞共同构成根尖干细胞微环境,为根的生长发育持续不断地提供细胞源。WUSCHEL-RELATED
研究发现细胞命运调控的“表观组-代谢组-表观组”跨界蝴蝶效应
8月24日,《自然-代谢》(Nature Metabolism)在线发表了中国科学院广州生物医药与健康研究院刘兴国课题组的研究成果。该研究提出由母系转录因子Glis1调控多能干细胞命运的“表观组-代谢组-表观组”的跨界级联反应新概念,表明Glis1实现衰老细胞重编程并稳定基因组的功能,揭示Glis1介导“表观组-代谢组-表观组”的级联反应中,糖酵解代谢组驱动
Nature:简单的DNA扭曲决定了胎盘的命运
2020年7月18日讯 /生物谷BIOON /——7月15日,耶鲁大学研究人员在Nature杂志上发表报告称,哺乳动物胎盘的发育依赖于一种不同寻常的扭曲,这种扭曲将DNA的经典双螺旋结构分离为单链形式。耶鲁大学的研究小组还发现了一种分子调控因子,它作用在这条单链上,可以加速或停止胎盘的发育,这一发现不仅对妊娠疾病有意义,而且对理解肿瘤细胞是如何增殖也有意义。"胎