打开APP

eLife:通过恢复大脑神经元的可塑性或有望开发出新型慢性偏头痛疗法

2021年5月10日 讯 /生物谷BIOON/ --偏头痛(migraine)是全球第三大流行性疾病,同时其也是一种常见的脑部疾病,在全球大约影响着14%的人群健康,受偏头痛影响最严重的一个患者亚群就是慢性偏头痛患者,慢性偏头痛,即每月有超过15天都会出现偏头痛,而当前的疗法仅部分有效或者患者会出现耐受性,目前研究人员并不清楚引起慢性偏头痛背后的分子机制,细

2021-05-10

Cell新文揭示:防止大脑衰老、逆转痴呆症,或可通过增强神经元自噬实现

机体内所有细胞都依赖细胞内监测系统来维持其蛋白质组的稳态(蛋白酶稳定)。神经元对蛋白质毒素的攻击高度敏感,因此细胞内蛋白质平衡对神经元来讲尤为重要。随着人们年龄的增长,神经元中自噬等细胞内监测机能逐渐下降,细胞内有害蛋白质清除力降低,这大大增加了神经退行性疾病的风险。近来有研究人员发现,阿尔兹海默病(AD,俗称“老年痴呆”)与神经元内自噬密切相关。近日,《C

2021-05-04

Science:纹状体胆碱能中间神经元中的ISR激活参与多巴胺调节和技能学习

2021年4月24日讯/生物谷BIOON/---整合应激反应(integrated stress response, ISR)是一个高度保守的生化途径,一旦被激活,就会明显改变蛋白合成。它在蛋白稳态、突触可塑性、学习和记忆中的作用使得该途径成为全身性疾病和大脑疾病的一个有吸引力的治疗靶标。临床前研究已显示,小分子ISR抑制剂能够增强某些形式的学习和记忆,这进

2021-04-24

猕猴后扣带回区神经元对自身运动感知的编码研究获进展

eLife在线发表了题为《猕猴后扣带回区前庭信号编码自身运动感知》的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、中科院灵长类神经生物学重点实验室空间感知研究组发表。研究利用虚拟现实系统,结合清醒猕猴胞外电生理技术探究了位于猕猴大脑后扣带回区域的神经元对基于自身运动感知的自身信息的编码,发现该区域中的后

2021-04-13

Nature:在神经元中发现了DNA损伤的“热点”

2021年3月31日讯/生物谷BIOON/--在一项研究中,来自美国国立卫生研究院(NIH)的研究人员发现了神经元DNA内积累一种类型的损伤——单链断裂(SSBs)的特定区域。这种SSBs的积累似乎是神经元所特有的,它挑战了人们对DNA损伤的原因及其在神经退行性疾病中的潜在影响的普遍理解。

2021-03-31

1篇Cell和1篇Cell子刊揭示生长中的神经元通过形成突触获得竞争优势

2021年3月20日讯/生物谷BIOON/---在一项新的研究中,来自美国斯坦福大学的研究人员发现一点竞争从来都不是坏事,尤其是在大脑中生长的新生神经元方面。他们利用遗传实验和计算机模型,阐明了幼鼠大脑发育的两个重要步骤:神经元的细胞体上生长出称为树突的分支延伸物,以及树突与其他神经元之间的连接。就像生物天线一样,树突通过称为突触的连接来接收其他神经元的传入

2021-03-20

源自双相障碍患者的星形胶质细胞影响神经元活动

星形胶质细胞是一种脑细胞,而源自双相情感障碍患者诱导性多能干细胞的星形胶质细胞不能为神经元活动提供理想的支持。3月5日,发表在Cell Press细胞出版社旗下期刊Stem Cell Reports上的一篇论文显示,这种疾病可以追溯到一种叫做白细胞介素-6(IL-6)的促炎分子,这种分子由星形胶质细胞分泌。虽然还需要进一步研究,但该结果强调了星形胶质细胞介导的炎症信号在精神疾病中的潜在作用。

2021-03-05

新研究发现,苹果还能促进神经元分化!

  “一天一苹果,医生远离我”, 这句大家耳熟能详的西方谚语,是否真的有道理呢?随着哺乳动物在特定饮食环境下的进化,植物性食物中的天然丰富化合物被发现对人体健康具有广泛的益处,可能已经成为了影响大脑结构和认知功能的环境决定因素之一,例如红葡萄皮中的白藜芦醇和绿茶中的儿茶素(EGCG)已被证明可以影响成年海马神经的发生。那么,苹果作为全世界

2021-02-24

揭示光激活大脑神经元表达的分子机制!

2021年2月28日 讯 /生物谷BIOON/ --近日,一篇刊登在国际杂志Scientific Reports上题为Competition between cyclization and unusual Norrish type I and type II nitro-acyl migration pathways in the photouncaging

2021-02-28

PNAS:研究揭示神经元激活实时图像

根据最近的一项研究,一种新型的分子电压传感器使观察工作中的神经细胞成为可能。波恩大学和洛杉矶加利福尼亚大学的研究人员现在已经成功地对其进行了重大改进。它允许以高的时间和空间分辨率观察活神经细胞中电信号的传播,从而能够调查以前无法进行研究的全新问题。该研究现已发表在《 PNAS》杂志上。

2021-02-03