美国开发出“大脑芯片”人造突触
人脑约有一千亿个神经元,神经元通过100万亿突触(即神经元之间的空间)传递指令,使大脑能够以闪电般的速度识别图案,完成记忆并执行其它学习任务。新兴领域“神经形态计算”的研究人员试图设计出像人脑一样工作的计算机芯片,通过模拟信号工作,类似于神经元。通过这种方式,小型神经形态芯片可以像大脑一样有效地处理数以百万计的并行计算,而目前只有大型超级计算机才可能实现。这种便携式人工智能方法中亟待解决的问题便是
基因泰克兰尼单抗注射液FDA批准用于糖尿病视网膜病变治疗
3月21日,罗氏子公司基因泰克公布称,美国FDA已批准公司Lucentis(ranibizumab-兰尼单抗)0.3mg预填充注射剂(PFS)作为一种新给药剂型用于所有糖尿病视网膜病的治疗。预计将在2018年第二季度上市销售。基因泰克全球产品开发主管、首席医学官Sandra Horning博士表示:“糖尿病视网膜病变是一种严重的疾病,影响着美国数百万人。今天,0.3mg L
阿柏西普用于非增殖性糖尿病视网膜病变3期试验结果积极
3月19日,再生元制药公司表示,公司用于评估EYLEA? (aflibercept,阿柏西普眼内注射溶液) 治疗中度至重度非增殖性糖尿病视网膜病变的临床3期试验PANORAMA达到了24周的主要研究终点。结果显示,58%接受EYLEA治疗的患者在第24周的糖尿病视网膜病变严重程度评分表(DRSS)上经历了两步或更高的改善,而接受假注射的患者中仅有6%的比例达到同样改善(p<0.0
专访李劲松博士:人造精子孕育"女儿国" 破解出生缺陷基因
在刚刚过去的世界出生缺陷日(3月3日),世卫组织官网披露全球每年超过800万婴儿患有严重出生缺陷。剔除围产期环境因素和孕妇妊娠期用药不当等原因,绝大多数先天性缺陷都源于显性/隐性基因异常。因此明确亲代致病基因位点与遗传疾病的关联,对于孕前早期筛查的一级出生缺陷防控体系而言至关重要。神经管异常是我国常见的重大出生缺陷之一,其中遗传因素贡献度高达70%。复旦大学王红
失明的人不用再苦苦等待眼角膜,研究发现了一种对失明有效的视网膜植入物
EPFL研究人员开发了一种新型的视网膜植入物,用于由于视网膜感光细胞而失明的人群。种植体部分恢复其视野,并可显着提高其生活质量。世界各地有三百二十万人是盲人。他们中有2百万至4百万人因视网膜中光敏细胞的损失而患病。这种类型的失明最有希望的治疗方法是包含电刺激视网膜细胞的电极的视网膜植入物。 “但目前的植入物产生非常差的结果,而且他们的佩戴者仍然被认为是合法的盲人,”在EPFL工程学院神经工程(LN
Nat Commun:复旦大学郑耿锋课题组证实视网膜假体有望恢复视力
2018年3月8日/生物谷BIOON/---根据一项新的研究,涂覆着金纳米粒子的二氧化钛纳米线(titanium dioxide nanowire)可恢复盲鼠检测光线变化的能力。这种视网膜假体(prosthetic Retina)可能为开发类似的设备来恢复黄斑变性和其他眼科疾病患者的视力迈出了一步。相关研究结果于2018年3月6日在线发表在Nature Communications期刊上,论文标题
美国大学研发的人造心脏有望提供永久性修复
尽管人造心脏已经存在一段时间了,但现在在美国只有一种被批准用于人类使用,而且只是为了让患者在接受心脏移植手术时继续让他们的心脏保持跳动。然而,由俄勒冈健康与科学大学(OHSU)开发的设备旨在成为一种永久性修复。OHSU 人造心脏由现在已经退休的 Richard Wampler 博士发明,其与衍生公司 OregonHeart 合作于 2014 年开始研究该设备。该公司自此停止运营,因此该大学去年接管
中美研究人员开发可检查视网膜疾病的人工智能
视网膜疾病是一种眼部疾病。 视网膜疾病常见的有以下5种:①血管和血管系统病变。如视网膜血管阻塞,动脉硬化性、高血压性、血液病性以及糖尿病性眼底病变等。②视网膜炎症。与脉络膜炎和视神经炎相互影响密切相关。③视网膜脱离。指视网膜神经层与色素上皮层的分离。④视网膜变性及营养不良。具有遗传因素。⑤视网膜肿瘤。其中以视网膜母细胞瘤为多见。近日,中美研究人员开发了一个使用大数据和人工智能的平台,不
瑞士科学家用磁性微粒开发人造“白血球”
据瑞士苏黎世联邦理工大学消息,该校机器人与人工智能系统研究所的一个科研团队用磁性微粒材料研发出一种人造“白血球”,在医学领域具有广泛的潜在应用前景。人体器官在受到病菌等侵害时,人体将调动血液中的白血球(如嗜中性粒细胞)迅速进入相应的器官组织,吞噬病菌或产生抗体,帮助机体防御感染。在这一过程中,白血球在人体血管内有着独特的运动方式,像风中的气球一样沿着血管壁旋转前进,甚至能够逆血管中血液
麻省理工学院“类脑芯片”最新突破:人造突触问世,可将人脑能力“复制”到芯片 ,终端 AI 威力或不再受限
"-->人脑最不可取代的便是其综合处理的能力。人脑被柔软的球状器官所包围,这个器官大约含有一千亿个神经元。在任何特定的时刻,单个神经元可以通过突触(即神经元之间的空间,突触中可交换神经递质)传递指令给数以千计的其它神经元。人脑中有总计超过 100 万亿的突触介导大脑中的神经元信号,在加强一些信号的同时也削弱一些其它信号,使大脑能够以闪电般的速度识别模式(pattern),记住事实并执行其它学习任务