打开APP

Journal of Controlled Release:少量多次的纳米药物疗法,可提供更好的癌症治疗效果

  纳米颗粒可用于将物质携带到身体的某些部位,例如将化疗药物递送送到肿瘤,将mRNA疫苗递送到体内等等。尽管这种“纳米医学”为改善癌症治疗提供了希望,但与常规化疗相比,临床批准的纳米药物的生存效益往往并不大。近日,美国三院院士、麻省总医院E.L. Steele肿瘤生物学实验室主任 Rakesh K. Jain 教授团队等在 Journal

2022-03-17

Nat Commun:抗生素抗性基因的全球健康风险评估

抗生素耐药性正日益威胁着全球人类的健康和疾病的临床治疗。在过去的十年中,抗生素耐药基因(ARGs)已经在自然、工厂和临床等所有环境中被检测到。抗生素的临床治疗是抗生素耐药基因传播的主要驱动因素。目前科学家已经发现很多基因都可以提供耐药性,但评估ARGs的相对健康风险是复杂的,诸如ARGs的丰度、横向传播倾向和在病原体中的表达能力等因素都很重要。近日,浙江工业

2022-04-01

J. Am. Chem. Soc.:富硫细菌环肽的生物合成研究获进展

  硫原子的引入是自然界赋予天然产物结构多样性和生物活性多样性的重要手段。中国科学院上海有机化学研究所刘文课题组长期致力于核糖体肽来源的富硫细菌环肽的生物合成研究。课题组先后解析了硫链丝菌素侧环中的喹纳酸、诺丝七肽侧环中的甲基吲哚酸、硫霉素结构中的唑杂环和Sch40832核心环中二氢咪唑并哌啶等非天然氨基酸结构单元形成的酶学过程。维里硫酰

2022-03-15

共同抗疫 | 与奥密克戎比“快”,华大智造测序仪和自动化设备已支援这些地方……

3月22日,国家卫健委发布《关于印发区域新型冠状病毒核酸检测组织实施指南(第三版)的通知》明确调整新冠肺炎疫情发生后,所在的设区市,包括城区常住人口1000万以上的超大城市,应当在24小时内完成划定范围的区域核酸检测任务。

2022-03-25

Journal of Hepatology:复旦附属中山医院团队破解肝癌对PD-1抑制剂耐药之谜

  免疫检查点阻断(ICB)治疗,尤其是PD-1/PD-L1抑制剂,给很多肿瘤患者带来了希望[3]。但是临床试验显示,PD-1抑制剂单药并没有给HCC患者带来显着的临床收益(临床试验注册号:KEYNOTE-240、CheckMate-459)。有研究表明,这很大程度上归因于肿瘤对PD-1抑制剂的耐药性[4,5]。所以我们迫切需要了解HCC

2022-03-24

Computational and Structural Biotechnology Journal:基于人工智能预测模型实现异源蛋白的高水平表达

近日,生物所微生物蛋白设计与智造团队与国内外多家科研单位开展合作,成功构建人工智能预测模型MPEPE,基于深度学习和分子进化的策略模拟分析异源基因在大肠杆菌中表达,提高了异源蛋白在大肠杆菌中的表达量。该研究促进了对基因序列与蛋白可溶性表达之间关系的认识,并为酶蛋白的理性分子设计提供了新方法。相关研究成果发表在《计算与结构生物技术期刊(Computationa

2022-03-13

Nature子刊: 单细胞测序揭示受体介导的癌症精准联合治疗

个性化肿瘤学带来了希望,即每个患者的癌症都可以根据其基因组特征进行治疗。几项试验表明,有可能以足够快的速度收集基因组数据,为治疗决策提供信息。对2011-2013年间完成的I期临床试验的荟萃分析显示,总的来说,使用分子生物标记物信息来影响治疗计划的试验比没有使用分子生物标志物信息的试验结果更好。

2022-03-30

The Lancet Neurology:世界首次朊病毒病的人体治疗实验,结果令人鼓舞

相信很多人都知道朊病毒这种奇葩而又可怕的存在,它的发现一度让生命科学这座大厦的基础“中心法则”倒塌。朊病毒其实不是病毒,而是一种感染性蛋白质,一旦遗传或感染,只能等待死亡降临,没有任何医治方法。但最近,《柳叶刀神经病学》(The Lancet Neurology)发表了一项题为:Prion protein monoclonal antibody (PRN10

2022-03-20

Molecular Cancer: 癌症患者以嵌合体为靶点的蛋白水解酶设计的临床考虑

识别致癌或非致癌的药物易损性是癌症研究的一个主要目标。致癌过程主要由结构基因组改变产生,包括突变、拷贝数变异或基因组重排。这些修饰中的一些可以转化为修饰的蛋白质,其功能的获得或丧失有利于生存或增殖,以及其他生物学作用。

2022-03-23

Nature Cell Biology:揭示HSF1的可诱导和可逆相分离介导热休克转录应答的作用机制

哺乳动物细胞的转录调控是迄今发现的最复杂的调控系统之一,对基因的选择性表达和细胞分化等过程起主要控制作用。细胞在热休克应答中快速改变基因表达以应对热损伤,然而,基于经典蛋白质-DNA相互作用的模型并不能充分解释由急性应激触发的显着转录激活,HSF1快速并可逆地调节热休克基因转录的分子机制仍未知。膜生物学国家重点实验室、北京大学生物医学前沿创新中心(BIOPI

2022-03-24