打开APP

细胞松弛素体系列全合成研究获进展

 结构复杂多样的天然产物是小分子药物发现的重要来源,尽管天然产物结构丰富多样但其自然来源有限,难以对其化学性质及生物活性开展深入研究,因此,如何简洁、高效、大量地获得具有特定结构天然产物及其类似物成为天然产物化学合成、生物合成及有机合成方法学的重要研究内容。细胞松弛素是一大类由聚酮和氨基酸杂合而成,结构新颖,活性显着的真菌次生代谢产物。近年来,国内

2020-12-23

篇文章聚焦科学家们在转运蛋白研究上取得的新成果!

本文中,小编整理了近年来科学家们在转运蛋白研究上取得的新成果,分享给大家!图片来源:CC0 Public Domain【1】Nature:几十年谜团终解决!揭示SLC25A51是哺乳动物线粒体NAD+转运蛋白,有望为一系列疾病开发新的疗法doi:10.1038/s41586-020-2741-7在一项新的研究中,来自美国宾夕法尼亚大学和德克萨斯州大学奥斯汀分

2020-09-25

Cell子刊:利用开创性的iPALM技术揭示HIV病毒的Gag蛋白晶格发生动态变化

2020年7月26日讯/生物谷BIOON/---病毒是可怕的。它们像隐形的军队一样侵入我们的细胞,而且每一种病毒都有自己的攻击策略。当病毒摧毁人类和动物群体时,科学家们争相反击。许多人利用电子显微镜,这种工具可以“看到”病毒中的单个分子在做什么。然而,即使是最复杂的技术,也需要将样本冷冻和固定,以获得最高的分辨率。如今,在一项新的研究中,来自美国犹他大学的研

2020-07-26

首次发现组蛋白H3-H4四体是一种铜还原酶

2020年7月11日讯/生物谷BIOON/---在一项新的研究中,来自美国加州大学洛杉矶分校的研究人员发现组蛋白H3-H4四聚体是一种铜还原酶。相关研究结果发表在2020年7月3日的Science期刊上,论文标题为“The histone H3-H4 tetramer is a copper reductase enzyme”。在这篇论文中,他们描述了他们开

2020-07-11

篇文章揭示SARS-CoV-2刺突蛋白的弱点

2020年5月31日讯/生物谷BIOON/---冠状病毒的视觉特征,即各个方向向外突出的结节状突起:刺突蛋白,也是它进入细胞的关键。这些刺突蛋白与细胞结合---就SARS-CoV-2而言,它们会与人细胞结合---从而引发感染。为了防止这种情况的发生,全世界的科学家都门在关注刺突蛋白,以揭示它们是如何发挥作用的,并从中找到潜在的弱点来加以利用。这种刺突结构本身

2020-05-31

Cell子刊详解SARS-CoV-2刺突蛋白中的精氨酸切割位点是感染人类肺细胞的关键

2020年4月26日讯/生物谷BIOON/---人们认为新型冠状病毒SARS-CoV-2(以前称为2019-nCoV)是在2019年末从一种特征不明显的动物宿主传播到人类。随后,SARS-CoV-2传播的震中是中国湖北省武汉市,超过65000例病例发生在该地区。然而,目前已经在110多个国家发现了感染病例,美国、意大利和西班牙目前正在大规模爆发疫情。了解SA

2020-04-26

Hyleukin-7(长效二IL-7)水平作用T细胞成熟,为癌症免疫治疗架桥铺路

2020年04月10日讯 /生物谷BIOON/ --NeoImmuneTech(NIT)是一家专注于开发T细胞疗法的临床阶段生物制药公司。近日,该公司宣布与百时美施贵宝(BMS)签订了一项临床合作协议,评估其T细胞放大器——长效IL-7疗法Hyleukin-7(rhIL-7-hyFc, NT-I7)和PD-1阻断抗体疗法Opdivo(欧狄沃,通用名:nivo

2020-04-10

篇文章聚焦淀粉样蛋白研究新进展!

本文中,小编整理了多篇重要研究成果,共同聚焦科学家们在淀粉样蛋白研究领域取得的新进展,分享给大家!图片来源:Si Lab, Stowers Institute for Medical Research【1】Science:反常!一种淀粉样蛋白非但不致病,而且还有助于储存记忆doi:10.1126/science.aba3526人们已知一种称为胞质聚腺苷酸化元

2020-03-21

Sci Rep:阐明特殊蛋白蛋白-2在细胞生存中所扮演的关键角色

2020年2月12日 讯 /生物谷BIOON/ --名为多囊蛋白-2(polycystin-2)的特殊蛋白存在于机体的每个细胞中,但截至目前为止研究人员并不清楚其存在的意义是什么,近日,一项刊登在国际杂志Scientific Reports上的研究报告中,来自耶鲁大学等机构的科学家们通过研究揭示了多囊蛋白-2保护机体抵御细胞死亡的分子机制,这或许就使得该蛋白

2020-02-13

Sci Trans Med:物与蛋白质帮助修复受损神经元

匹兹堡大学医学院的研究人员创造了一种可生物降解的神经导管(一种聚合物管),其中装有促进生长的蛋白质,可以使受损神经从新生长,而无需移植干细胞或供体神经。

2020-01-24