细胞的启示,能源的高效利用
Humans face the challenge of dwindling resouces. Simons suggests that engineers of the future will be inspired by biologist's understanding of cells to design efficient high tech solutions. However, he makes a strong argument for a balance with low tech solutions that are simple, efficient and use very little energy.
说服选民通过保护干细胞研究的提案
The story of how Morrison and his colleagues convinced Michigan voters to pass Proposal 2 and protect stem cell research in the state.
观察活体细胞的有丝分裂过程
Early microscopic images of cells and subcellular organelles were obtained using fixed cells. In this lecture, Dr. Inoue recalls how, in 1947, he built a polarizing light microscope that allowed him to visualize, for the first time, the dynamic mitotic spindle in live cells.
裴端卿:用“万能细胞”延缓衰老是可行的
在外界看来,他是首届国家中长期规划“干细胞研究”计划专家组召集人,承担着为中国在该领域实现突破的重大责任;在研究领域,他是带着光环的领军“学霸”;在学生眼里,他是“身先士卒”的导师。而在他自己看来,能够代表国家成为人类未知领域的一名探索者,是一生最大的荣耀,他就是中国科学院广州生物医药与健康研究院院长裴端卿。
本周六晚,由中央电视台综合频道和唯众传媒联合制作的中国首档电视青年公开课《开讲啦》将邀请裴端卿做客,谈及“再生细胞”对减缓衰老的应用,裴端卿表示:“趁还年轻的时候干预它,实现延缓衰老是可行的。”
尿液成为“不老泉”?
“尿液中有非常健康的细胞,通过对它们重新编程,可以把它们的命运逆转到受精以后5-6天的状态,这种状态具有产生人体所有组织细胞和器官的潜能,可能产生皮肤、心脏、血管等,条件成熟时将它们重新植回人体,就可以替代我们已经丧失的功能。”2013年,裴端卿与他的团队从人的尿液中寻找到了“万能细胞”,并从中培养出了一颗人的牙齿。2015年,又宣布发现了细胞在结构上“返老还童”的关键机制。这意味着在不远的将来,科学家或许还可以将这些细胞培养其他器官,移植到人体损伤部位以便替换衰老的组织或器官,治疗疾病,延长人类生命。
在裴端卿看来,人类首先应该找到衰老或者不衰老的基本规律,这些规律会在各种特性疾病领域的治疗中产生比较广泛的应用价值。裴端卿说:“如果能够知道细胞命运,包括衰老在内的一些基本规律,我们在年轻的时候、在还可以干预它的时候,让衰老延缓,这个是可行的。”
现实版的“生化危机”会出现吗?
在感受科学神奇力量的同时,常常伴随着对其安全性的忧虑。节目现场,青年代表提出了自己的疑惑——科学家们对细胞、基因的各类实验越来越前端,那么电影《生化危机》里,由于科学家实验而造成的生化灾难会不会某一天真的成为现实?
裴端卿教授巧妙回应:“我们发明了原子弹,但也只在特殊的历史时期用过,现在人类已经拥有毁灭地球的能力,但同时也有足够的自制力与智慧。”一项新的技术诞生之时,的确需要全社会去讨论它的社会应用的风险,把这个研究清楚之后,依靠人类的智慧和完备的机制进行监管,减少风险产生的可能。正是因为科学具有这种可控性,《生化危机》的场景就不会出现。
裴端卿:干细胞技术带来延长生命的可能
本期节目主要内容: 听说,世界上有这么一位科学家,在中国研究人类“长生不老”的秘密。他就是中国科学院广州生物医药与健康研究院院长裴端卿。2013年,他与他的团队从尿液里找到“不老泉”,成功提取稳定的多能干细胞,并成功地培育出了人类的再生牙齿。还想知道更多关于生物细胞学的知识吗?敬请关注本期节目。
细胞质处理小体(P-小体)和mRNA的周期
Roy Parker (U. Colorado Boulder/HHMI) Part 2: P-bodies and the mRNA Cycle
In the second part of this lecture, I will provide an overview of why the regulation of translation and mRNA degradation is an important aspect of the control of gene expression in eukaryotic cells. In addition to the translating pool of mRNAs associated with polysomes, recent experiments have identified P-bodies and stress granules as specific cytoplasmic compartments wherein untranslated mRNAs accumulate. In addition to mRNAs, P-bodies tend to contain translation repressors and mRNA degradative enzymes, while stress granules reflect mRNAs in association with some translation initiation factors and RNA binding proteins. P-bodies and stress granules interact and suggest a dynamic process wherein eukaryotic mRNAs remodel their interacting proteins and enter and exit translation, thereby affecting the control of mRNAs in the cytoplasm. We are interested in defining the mechanisms by which P-bodies and stress granules assemble and how cells regulate the movement of mRNAs between these different biochemical and cell biological compartments. Several approaches will be described including biochemical and genetic analyses of known proteins modulating these events, as well as the identification of new factors affecting P-body and stress granule formation and function.
In 2012, Roy Parker joined the University of Colorado, Boulder after many years at the University of Arizona.
细胞大小究竟如何调控细胞增殖
Martin Raff (UCL) Part 1: Regulation of Cell Size
The size of an organ or organism depends mainly on the sizes and numbers of the cells it contains. In the first segment of my talk, I describe our work on cell size control in cultures of purified rat Schwann cells. Most proliferating cells grow before they divide, but it is not known how growth and division are co-ordinated to ensure that cells divide at an appropriate size. We have found that extracellular signals can control cell growth and cell-cycle progression separately and that the size of Schwann cells at division depends on the signalled rates of both cell growth and cell-cycle progression, rather than on a cell-size checkpoint that monitors cell size.
细胞数目究竟如何调控细胞增殖
Martin Raff (UCL) Part 2: Cell Number Control
In the second segment of my talk, I describe our work on cell number control in the rat oligodendrocyte cell lineage. Cell numbers depend on controls on both cell death and cell proliferation. We have found that oligodendrocytes are normally overproduced and kill themselves in large numbers in a competition for survival signals on the surface of the axons that the oligodendrocytes myelinate. Most differentiated cells, including oligodendrocytes, develop from dividing precursor cells that divide a limited number of times before they terminally differentiate, but it is not known what stops cell division and initiates differentiation. We have found that oligodendrocyte precursor cells have an intrinsic timing mechanism that helps determine when they stop dividing and differentiate. See more at http://www.ibioseminars.org
顶复动物亚门—最原始、最简单、最低等的单细胞动物
David Roos (U Penn) Part 1: Biology of Apicomplexan Parasites
There are more than 5000 species of single-celled eukaryotes in the biological phylum known as the Apicomplexa, including the parasites responsible for malaria, neurological birth defects, and opportunistic infections associated with HIV/AIDS. These ancient protozoa provide a unique window into the evolution of subcellular organelles that have long fascinated cell biologists. Familiar features help to elucidate the origins, functions and design parameters for the secretory pathway, endosymbiotic organelles, the cytoskeleton, and cell cycle control. Conversely, parasite-specific organelles highlight the evolutionary diversity of eukaryotes, and suggest novel targets for treating disease. See more at http://www.ibioseminars.org
GE:微载体在贴壁细胞大规模培养中的应用
内容主要讲述了微载体的本质属性以及关键参数,以及这些参数在细胞放大培养过程中的关键作用。微载体球转球放大过程中的注意事项。