打开APP

Science:揭示粘附密码确保胚胎发育过程中的组织和解剖结构正确形成

2020年10月10日讯/生物谷BIOON/---在显微镜下,每一个多细胞有机体生命的最初几个小时都显得异常混乱。在受精后,曾经平静的单细胞卵子一次又一次地分裂,很快就在快速生长的胚胎中形成了视觉上混乱的细胞战场。然而,在这种明显的大混乱中,细胞开始自我组装。很快,空间模式就出现了,成为构建组织、器官和从大脑到脚趾等复杂解剖结构的基础。几十年来,科学家们一直在

2020-10-10

结构生物领域最新研究进展

2019年10月28日 讯 /生物谷BIOON/ --本期为大家带来的是结构生物学领域的最新研究进展盘点,希望读者朋友们能够喜欢。 1. eLife:单突变严重影响细菌转运蛋白的结构与功能DOI: 10.7554/eLife.48909 最近,在《eLife》杂志上发表的一项新研究发现,通过对某个细菌蛋白进行单个氨基酸突变,会改变其结构和功能,进而揭示了复杂基因进化的影响。这项

2019-10-28

化学交联质谱让结构生物研究如虎添翼

  在蛋白质组学分析方法中,质谱获得的是多肽序列结构的信息;那么用质谱是否可研究大分子蛋白的结构信息?近几年来,董梦秋实验室在中国做出了多项先驱性工作,主要集中在化学交联质谱领域。在用单颗粒冷冻电镜技术研究结构生物学屡创佳绩的当下,很多研究者都把样品一分为二,一份做冷冻电镜,一份做交联质谱。那么交联质谱如何让结构生物学研究如虎添翼?pLink和交联质谱在国际上的影响力与化学交联

2019-09-02

近期结构生物研究进展一览

2019年5月21日 讯 /生物谷BIOON/ --本期为大家带来的是结构生物学领域的最新研究进展,希望读者朋友们能够喜欢。1. Nat Microbiol:新结构生物学研究揭示病原体入侵宿主机制DOI: 10.1038/s41564-019-0427-4虽然导致胃癌、百日咳,军团病等危险性疾病的病原菌各不相同,但它们都利用相同的分子机制来感染人体细胞。细菌使用这种称为IV型分泌系统(T4SS)的

2019-05-20

Nat Microbiol:新结构生物研究揭示病原体入侵宿主机制

2019年5月20日 讯 /生物谷BIOON/ --虽然导致胃癌、百日咳,军团病等危险性疾病的病原菌各不相同,但它们都利用相同的分子机制来感染人体细胞。细菌使用这种称为IV型分泌系统(T4SS)的机器将有毒分子注入细胞,并传播基因对抗抗生素的杀伤。现在,加州理工学院的研究人员已经从人类病原体——军团菌嗜肺军团菌中揭示了T4SS的3D分子结构。这可能在将来能够为上述疾病开发精确靶向的抗生素。>

2019-05-20

Structure:结构生物研究揭示线粒体酶是如何引发细胞死亡的?

2019年3月16日 讯 /生物谷BIOON/ --细胞色素c是一种酶,它在线粒体产生能量中起重要作用。此外,它还涉及发出危险问题的信号,这些问题涉及细胞凋亡或程序性细胞死亡。使用固态核磁共振,格罗宁根大学副教授Patrick van der Wel及匹兹堡大学的同事们发现,细胞色素c诱导的信号比预期的更好控制。结果于3月14日发表在《Structure》杂志上。(图片来源:www.pixabay

2019-03-16

2018年结构生物领域进展汇总

2018年12月21日 讯 /生物谷BIOON/ --2018年即将过去,针对这一年来结构生物学领域的重大进展,本文进行了简要盘点,希望读者朋友能够喜欢。1. Nature:科学家成功捕获恶性疟原虫感染红细胞的关键复合体结构 有望开发出新型疟疾疫苗DOI: 10.1038/s41586-018-0779-6近日,一项刊登在国际杂志Nature上的研究报告中,来自霍华德休斯敦医学院的科学家们通过研究

2018-12-21

结构生物领域最新研究进展

2018年8月27日 讯 /生物谷BIOON/ -本期为大家带来的是结构生物学领域的最新研究进展,希望读者朋友们能够喜欢。1.Nature & Science:冷冻电镜技术揭示Hedgehog信号复合体的结构DOI: 10.1126/science.aas8843DOI: 10.1038/s41586-018-0308-7Hedgehog信号通路对于胚胎细胞的发育具有重要的作用,该信号的缺

2018-08-27

2017年度巨献:结构生物重磅级研究TOP25解读

2017年12月31日/生物谷BIOON/---时光总是匆匆而逝,12月份即将结束,2017年也接近尾声,迎接我们的将是崭新的2018年,2017年科学家们在结构生物学领域依然取得了许多重磅级的研究成果,本文中小编对2017年结构生物学领域的重磅级亮点研究进行盘点,分享给大家!与各位一起学习!1.Nature:首次获得机械激活的离子通道Piezo1的三维结构doi:10.1038/nature25

2017-12-31

Science:助推光学遗传发展!解析出紫红质通道蛋白2的三维结构

图片来自MIPT。2017年11月29日/生物谷BIOON/---紫红质通道蛋白2(channelrhodopsin 2, ChR2)是一种广泛用于光遗传学技术(optogenetics)的膜蛋白。光遗传学技术是一种相对较新的技术,涉及利用光来操纵活的有机体中的神经元和肌肉细胞。类似的方法已被用来部分地逆转听力/视力丧失和控制肌肉收缩。ChR2是一种主要的光遗传学工具。它是一种光敏蛋白,2003年

2017-11-29