Nat Commun:“窝沙发,吃薯条”的原因已找到——表观遗传学修饰竟会让人“变懒”!
为什么有些人喜欢运动而另一些人讨厌运动呢?大多数人会认为这全是由于遗传所致,但是贝勒医学院的一项基于小鼠的新研究首次表明不同的分子水平的调节(表观遗传学)在确定人与生俱来的运动能力中起着关键作用。
表观遗传学新药!首创EZH2抑制剂tazemetostat治疗上皮样肉瘤获美国FDA专家委员会全票通过!
2019年12月20日/生物谷BIOON/--Epizyme是一家临床阶段的美国生物制药公司,致力于开发创新性的表观遗传学药物来改写癌症及其他严重疾病的治疗。近日,该公司宣布,美国食品和药物管理局(FDA)肿瘤药物顾问委员会(ODAC)以11票对0票的投票结果,支持了tazemetostat作为一种药物治疗转移性或局部晚期上皮样肉瘤(ES)患者的利益-风险比
Nat Commun:表观遗传精准编辑帮助修复遗传性大脑紊乱症状
近日,来自约翰霍普金斯大学医学院的研究人员在发育中的小鼠大脑中使用了针对性的基因表观基因组编辑方法,逆转了一个导致遗传性疾病WAGR综合征,从而导致人的智力残疾和肥胖的基因突变。这种特殊的编辑方式并没有改变被调控基因的实际遗传密码,而是改变了表观基因组,即基因的调控方式。
Nat Commun:RNA的甲基化与去甲基化修饰
德国慕尼黑的路德维希-马克西米利安大学(LMU)研究人员发现了细菌RNA中一种新型的化学修饰形式。显然,只有当细胞处于应激状态时,这种修饰才会附着在分子上,并且在恢复过程中会迅速去除。
研究揭示RNA poly(A)尾巴内部广泛存在其他碱基修饰
RNA poly(A)尾巴是成熟的mRNA和lncRNA的重要组成部分,对RNA稳定性和翻译起着重要的调控作用。然而目前的poly(A)尾巴检测技术仍然非常有限。11月22日,中国科学院遗传与发育生物学研究所陆发隆研究组在《自然-通讯》(Nature Communications)发表题为Poly(A) inclusive RNA isoform sequencing (PAIso-seq) re
Nat Protoc:一种新型的高灵敏性表观基因组技术有望帮助对抗多种人类疾病
2019年12月6日 讯 /生物谷BIOON/ --关于疾病和机体对疾病的反应方式还有很多我们不清楚,部分原因是人类基因组是使得每个人独一无二的完整DNA组合;近日,一项刊登在国际杂志Nature Protocols上的研究报告中,来自弗吉尼亚理工学院等机构的科学家们通过研究开发了一种新技术,其能帮助理解人类机体如何有效对抗疾病。图片来源:Virginia
罗氏剪接修饰剂risdiplam在美国进入优先审查!
2019年11月26日讯 /生物谷BIOON/ --罗氏(Roche)近日宣布,美国食品和药物管理局(FDA)已受理risdiplam的新药申请(NDA)并授予了优先审查,该药是一种运动神经元生存基因2(SMN2)剪接修饰剂,用于脊髓性肌萎缩症(SMA)的治疗。FDA已指定处方药用户收费法(PDUFA)目标日期为2020年5月24日。之前,FDA已授予risdiplam孤儿药资格和快速通道资格。r
新型CRISPR工具或能通过将RNA复制到基因组中精确修饰基因
2019年11月19日 讯 /生物谷BIOON/ --构成生命蓝图的DNA序列变异对任何物种的健康都是至关重要的,成千上万的DNA突变被认为都会导致疾病,经过几十年的遗传学和分子生物学研究后,如今研究人员在开发能够纠正突变的基因组编辑工具上取得了巨大的进展,但由于工具依赖于复杂和相互竞争的细胞过程,基因编辑的效率和准确性似乎受到了根本性的限制;近日,一项刊登在国际杂志Nature上的研究报告中,研
肝脏再生与类器官形成中表观遗传重塑过程
在成体肝脏中,生理条件下细胞迭代的速率较低。而肝脏遇到组织损伤的情况下,细胞则能够高效地发挥再生能力【1-4】。最近有研究发现,胆管细胞能够发展成为具有自我更新能力的肝脏类器官,并且具有分化成为肝细胞和导管细胞的能力【5】。但是胆管细胞获得细胞可塑性、起始类器官发育以及应对组织损伤的再生能力是如何发生的,这其中的分子机制还很不清楚。2019年11月4日,剑桥大学Meritx
多篇重要文章解析科学家们在表观遗传学研究取得的新成果!
本文中,小编整理了多篇重要研究成果,共同解读科学家们在表观遗传学研究领域取得的新进展,分享给大家!图片来源:Manel Esteller【1】Leukemia:新发现!白血病细胞或会通过表观遗传学改变转分化为非癌变细胞!doi:10.1038/s41375-019-0643-1日前,一项刊登在国际杂志Leukemia上的研究报告中,来自Josep Carreras白血病研究所等机构的科学家们通过研