打开APP

Molecular Plant Pathology:研究揭示OsAGO2调控水稻对水稻黑条矮缩病抗性的新机制

  近日,江苏省农科院植保所在JCR一区Top期刊《Molecular Plant Pathology》在线发表了题为“ARGonAUTE 2 increases rice susceptibility to rice black-streaked dwarf virus infection by epigenetically regul

2021-06-23

科学家揭示有效预防癌症转移的新机制

2021年6月6日 讯 /生物谷BIOON/ --原发性肿瘤切除后无法检测到播散性肿瘤细胞(DTCs,disseminated tumour cells)的持续存在对于开发有效的癌症疗法构成了巨大的挑战,这些持久休眠的DTCs是癌症未来发生转移的种子,而将其从休眠状态转化为生长状态的特殊机制目前还需要研究人员阐明。由于癌症的休眠能为预防转移性疾病的发生提供一

2021-06-06

研究揭示长链非编码RNA调控小麦春化作用介导小麦开花的新机制

  冬小麦开花需要长时间环境低温的诱导,该过程称之为“春化作用”。这一过程受到外部环境因子和植物内在发育状态的双重复杂精准的调控。冬小麦不同品种的春化特性与其产量直接相关。在六倍体小麦中,TaVRN1是受低温诱导、可加速开花转换的关键调控因子。然而,目前对于在春化过程中TaVRN1逐步激活的分子机制尚不清楚。中国科学院院士、中科院植物研究

2021-06-04

中国科学家揭示调节人类皮肤毛发再生的新机制 有望帮助开发治疗脱发等疾病的新型疗法!

2021年6月15日 讯 /生物谷BIOON/ --对环境信号保持适当的敏感性水平对于成体干细胞功能的正常发挥至关重要,近日,一篇刊登在国际杂志Cell Reports上题为“miR-24 controls the regenerative competence of hair follicle progenitors by targeting Plk3”的

2021-06-15

孙倍成与林安宁研究团队合作揭示肝癌炎癌转化调控新机制

  南京大学医学院附属南京鼓楼医院孙倍成教授和南京大学现代生物研究院林安宁教授研究团队的最新成果,发现肝细胞中转录因子Miz1蛋白以不依赖于其转录功能的形式,通过与癌蛋白MTDH结合,阻断蛋白激酶IKK介导的MTDH的磷酸化,限制肝细胞转录因子NF-κB的促肿瘤活性,从而抑制化学性和炎症相关的肝细胞癌的发生和发展。肝细胞癌(HCC)是全球

2021-05-29

研究揭示RNase P蛋白亚基调控水稻广谱抗病新机制

  近日,中国农业科学院植物保护研究所作物有害生物功能基因组研究创新团队在植物学知名期刊《植物生物技术杂志(Plant Biotechnology Journal)》上发表题为“The rice RNase P protein subunit Rpp30 confers broad-spectrum resistance to funga

2021-05-24

研究揭示肿瘤相关巨噬细胞调控CD8+ T细胞命运新机制

  肿瘤免疫治疗为癌症患者带来新的治疗手段和希望,在多种肿瘤类型中得到了成功应用。一部分病人可以响应免疫治疗并取得理想的治疗效果,但大部分病人对免疫治疗无法产生响应。其中一个重要原因是其肿瘤微环境中T细胞的功能已经处于不可逆的失调状态。研究表明,肿瘤相关巨噬细胞是诱导T细胞功能失调的主力军之一。作为免疫细胞的一员,巨噬细胞进入肿瘤微环境中

2021-05-25

研究发现昆虫免疫防御新机制

  中国科学院分子植物科学卓越创新中心研究员王四宝研究组在PNAS上在线发表了题为Insects defend against fungal infection by employing microRNAs to silence virulence-related genes的研究论文。该研究首次发现了昆虫分泌miRNA到入侵的病原真菌内

2021-05-07

科学家揭示乙型肝炎病毒自限性新机制

  近期,Journal of Hepatology在线发表了中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)研究员胡荣贵课题组的最新合作成果——Translatomic profiling reveals novel self-restricting virus-host interactions during HBV

2021-05-13

Nature Communications:研究揭示固有免疫受体AIM2识别有机污染物,触发炎症反应和组织损伤的新机制

全氟烷基化合物 (Perfluoroalkyl substances, PFAS) 具有良好的疏水疏油性和化学稳定性,被广泛应用于清洁剂、耐水涂料和食品包装等工业和民用领域。然而,PFAS在环境中难以被降解,导致其广泛存在于自然环境介质(如水土和空气)和动植物体内。人体可通过摄取饮用水和食物、吸入空气和粉尘等多种途径接触PFAS。已有大量流行病学研究表明,体

2021-06-03