非肌肉浸润性膀胱癌(NMIBC)免疫治疗!默沙东Keytruda(可瑞达)新适应症获美国FDA专家委员会推荐批准!
2019年12月19日讯 /生物谷BIOON/ --肿瘤免疫治疗巨头默沙东(Merck & Co)近日宣布,美国食品和药物管理局(FDA)肿瘤药物顾问委员会(ODAC)以9票对4票的投票结果,建议批准抗PD-1疗法Keytruda(中文商品名:可瑞达,通用名:pembrolizumab,帕博利珠单抗)用于某些高危肌肉浸润性前列腺癌(NMIBC)患者的
Nat Cell Biol:科学家首次发现肌腱干细胞 或有望彻底改变肌腱的损伤修复
2019年12月10日 讯 /生物谷BIOON/ --疤痕组织的积累往往会使得从回旋套撕裂、膝关节和其它肌腱损伤的恢复成为一个痛苦且极富挑战的过程,而这常常也会引发继发性的肌腱锻炼。近日,一项刊登在国际杂志Nature Cell Biology上的研究报告中,来自卡内基科学研究所的科学家们通过研究发现,肌腱干细胞的存在或能被用来改善肌腱的愈合,同时还能避免患
非肌肉浸润性膀胱癌(NMIBC)免疫治疗!默沙东Keytruda(可瑞达)在美国进入优先审查!
该sBLA寻求批准Keytruda一个新的适应症,用于高风险肌肉浸润性前列腺癌(NMIBC)患者的治疗,具体为:作为一种单药疗法,用于治疗不符合膀胱切除术资格或已选择不进行膀胱切除术(切除膀胱)的卡介苗(BCG)无应答、高风险、伴原位癌(CIS)、伴或不伴乳头状肿瘤的NMIBC患者。
揭示Pax3 mRNA控制肌肉干细胞命运机制
2019年11月24日讯/生物谷BIOON/---组织保持稳态和再生取决于组织特异性的干细胞群体,其中的一些干细胞群体长时间处于静止状态。在脊椎动物中,肌肉干细胞(MuSC)是骨骼肌再生所必需的。近期的研究已表明,久坐不动小鼠中的MuSC对成年肌纤维的维持起着重要的作用,它们对隔膜肌(diaphragm muscle)的贡献较大,而对下后肢肌(lower hindlimb muscle)的贡献较小
Science子刊:揭示蛋白CaVbeta1E维持肌肉质量机制
2019年11月21日讯/生物谷BIOON/---骨骼肌是人体最丰富的组织(约占40%),在运动和重要功能(心率和呼吸)中起着至关重要的作用。在衰老过程中,绝大多数人会出现肌肉数量、质量和强度的损失,这被称为肌肉减少症(sarcopenia)。世界卫生组织(WHO)于2016年宣布这种导致残疾和依赖的状态为疾病。在一项新的研究中,来自法国索邦大学等研究机构的研究人员通过研究小鼠的年轻肌肉和衰老肌肉
Cell Rep:线粒体关键元件调控肌肉功能
2019年11月18日 讯 /生物谷BIOON/ --剧烈的活动(例如马拉松)会使我们的肌肉变得疲劳,酸痛甚至受损。随着时间的流逝,我们的肌肉纤维会通过复杂的细胞过程得到自我修复。最近,托马斯·杰斐逊大学的MitoCare中心与华盛顿儿童国家卫生系统遗传医学研究中心合作进行的新研究已经确定,线粒体中的蛋白质MICU1是所有细胞的“动力源”,它在维持肌肉大小和功能以及修复受损的肌肉纤维方面如何发挥关
Nature:揭示蛋白支架在修复DNA断裂中起关键作用
2019年11月13日讯/生物谷BIOON/---在一项新的研究中,来自丹麦哥本哈根大学的研究人员发现了某些类型的蛋白如何让受损的DNA保持稳定,从而保持DNA的功能和完整性。这一新发现也解释了某些蛋白存在先天或后天缺陷的人为何无法让他们的DNA保持稳定并患上诸如癌症之类的疾病。相关研究结果近期发表在Nature期刊上,论文标题为“Stabilization of chromatin topolo
Nat Commun:如何利用“DNA修复错误”机制治疗疾病?
2019年11月1日 讯 /生物谷BIOON/ --近日,由日本京都和加拿大蒙特利尔的研究人员开发的一种新的生物信息学工具MHcut揭示,DNA损伤的自然修复系统——“微同源性介导的末端连接”,在人类细胞中发生的几率可能比以往人们认为的要普遍得多。研究人员使用MHcut和商业基因组编辑技术,以极高的精确度在iPS细胞中创建了突变,从而无需患者样本即可对疾病进行建模。因此,即使在患者样本稀少或无法获
Nat Commun:参与DNA修复的蛋白质可能有助于抑制癌症
2019年11月5日 讯 /生物谷BIOON/ --每天,人体内的细胞都会经历无数次的分裂。新生的细胞用于替换分旧的,损坏的或死掉的细胞。不过,在细胞分裂之前, DNA会首先复制产生精确副本,并将其传递给新细胞。 为了开始复制过程,DNA双螺旋首先展开,因此每条链都可以用作合成新DNA的模板。科学家将展开的DNA链片段称为复制叉。随着这一高度复杂的复制过程的进行,原始DNA的两条链可能断
肌肉干细胞研究最新进展(第3期)
2019年10月29日讯/生物谷BIOON/---肌肉干细胞可发育分化为成肌细胞(myoblasts),后者可互相融合成为多核的肌纤维,形成骨骼肌最基本的结构。人类胚胎和成人体内都存在肌肉干细胞。胚胎和胎儿的肌肉干细胞增殖使得肌肉组织发展;成年人体内的肌肉干细胞亦被称为卫星细胞,处于休眠状态,沿着肌肉纤维而分布。在经过强烈运动或是受到外界伤害之后,成人的肌肉干细胞会被激活并开始自我增殖,从而增加或