打开APP

Nature medicine:神经网络提供专家级别复杂先天性心脏疾病的孕前检查

每年,有成千上万的婴儿出生即患有统称为先天性心脏病(CHD)的严重心脏畸形疾病。先天性心脏病是最常见的出生缺陷。Nature报道的一项研究表明,10%这样的缺陷是由并非来自患儿父母的遗传突变所引起。虽然胎儿筛查超声可以提供胎儿心脏的五个视图,可以检测90%的复杂心脏病,但在实践中,检查灵敏度低至30%。近期的一项研究表明,训练好的神经网络可以提供专家级别复杂

2021-05-16

Cell Rep:一种参与神经变性疾病的特殊蛋白或能阻断诱发细胞死亡的特殊信号

2021年5月11日 讯 /生物谷BIOON/ --RIG-I样受体(RLRs)会通过识别双链RNA(dsRNA)参与到对自身和非自身的识别过程中去,目前有研究表明,免疫刺激性dsRNAs是普遍表达的,但其却会被细胞RNA结合蛋白(RBPs)所破坏或隔绝起来,TDP-43就是一种与多种神经性障碍相关的RBP,其对于细胞的活力至关重要。近日,一篇发表在国际杂志

2021-05-10

英国研究人员发现神经退行性疾病新基因机制

  英国伦敦国王学院和弗朗西斯·克里克研究所的研究人员发现了与神经退行性疾病有关的关键基因机制,发表在《自然通讯》上。这项研究揭示了一种新的基因机制,解释了蛋白质SFPQ和肌萎缩性侧索硬化症(ALS)之间的关联。SFPQ还与其他神经退行性疾病有关,包括额颞叶痴呆(FTD)和阿尔茨海默氏病。SFPQ是一种蛋白质,可调节神经系统中称为神经元的

2021-04-12

Nat Neurosci: 研究揭示基因表达与神经疾病遗传性特征

随着时间的流逝,响应神经元活动的基因表达会显著影响人脑的发育。尽管许多神经科学家已经研究了神经元活动的表观遗传学效应,但他们的大多数研究都是在小鼠上进行的,因此对人类这些过程的理解仍然非常有限。

2021-03-18

科学家发现在多种人类神经变性疾病发生过程中扮演关键角色的关键细胞压力酶类!

2021年3月23日 讯 /生物谷BIOON/ --近日,一篇发表在国际杂志PLoS Biology上题为“MARK2 Phosphorylates eIF2α in Response to Proteotoxic Stress”的研究报告中,来自约翰霍普金斯大学布鲁姆博格公共健康学院等机构的科学家们通过研究发现,名为MARK2的酶类或能作为细胞中的一种关键

2021-03-23

科学家有望利用人类机体的肠道微生物组来开发治疗神经系统疾病的新型靶向性疗法!

2021年3月23日 讯 /生物谷BIOON/ --当我们想到诱发神经系统疾病的原因以及如何治疗时,我们通常会想到针对大脑来进行研究;但这到底是不是最佳的方法或者唯一的方向呢?日前,一篇发表在国际杂志Cell上题为“Dissecting the contribution of host genetics and the microbiome in compl

2021-03-23

中国科学家有望开发出治疗神经系统疾病的新型疗法!

2021年2月28日 讯 /生物谷BIOON/ --近日,一篇发表在国际杂志Proceedings of the National Academy of Sciences上题为“SOX9-COL9A3–dependent regulation of choroid plexus epithelial polarity governs blood–cerebr

2021-02-28

基因疗法与神经退行性疾病

  神经退行性疾病(ND)是机体神经元结构或功能逐渐丧失而引发的一类疾病,包括帕金森病(PD)、阿尔茨海默病(AD)、亨廷顿氏病等;目前这类疾病病因尚不明确并无有效治愈手段,且严重威胁着患者的生活质量。基因疗法可以将外源正常基因导入靶细胞,以纠正或补偿因基因缺陷和异常引起的疾病,特别是神经退行性疾病,因此受到特别的关注。近日,Nature

2021-02-09

研究发现RNA结合蛋白靶位点失调是精神疾病风险的重大影响因素

  美国普林斯顿大学Olga G. Troyanskaya、Christopher Y. Park等研究人员合作,通过RNA结合蛋白靶位点失调的全基因组图谱揭示出对精神疾病风险具有重大影响的因素。相关论文于近日在线发表在《自然—遗传学》杂志上。研究人员表示,尽管精神疾病有很强的遗传基础,但潜在的分子机制在很大程度上尚未确定。RNA结合蛋白

2021-01-22

Nature:揭示细胞膜中谷氨酸转运体的作用机制,有助于理解一系列神经系统疾病

2021年2月22日讯/生物谷BIOON/---在一项新的研究中,来自澳大利亚悉尼大学和美国伊利诺伊大学厄巴纳-香槟分校的研究人员揭示了我们细胞中最重要的分子机器之一---谷氨酸转运体(glutamate transporter)---的形状,这有助于解释我们的脑细胞如何相互沟通。相关研究结果于2021年2月17日在线发表在Nature期刊上,论文标题为“G

2021-02-22