打开APP

核酸药物的研究进展

   核酸药物是指可用于治疗疾病的核酸本身或与之密切相关的化合物,包括天然核苷酸和经化学修饰的核苷酸。虽然核酸药物的类型多种多样,但它们都有一个共同的作用机制,通过Watson-Crick碱基互补配对机制特异性识别内源性核酸序列,从而发挥作用[1]。除基因治疗以外,用于治疗的核酸还可通过抑制DNA或RNA的表达,从而抑制与疾病相

2021-09-06

蛋白激活受体2信号通过β-catenin和骨膜蛋白促进大肠癌的自我更新和转移

肿瘤干细胞样细胞(CSCs)的维持和增殖是肿瘤转移所必需的。虽然蛋白酶激活受体2 (PAR2)与结直肠癌(CRC)的进展密切相关,但尚不清楚它如何调节远端转移,也没有研究表明与CSCs有关。

2021-09-25

JECC: RNAm6A去甲基FTO介导的LINC00022表观遗传上调促进食管鳞癌发生

长非编码RNA(LncRNA)控制细胞增殖,在食管鳞状细胞癌(ESCC)的发生发展中起重要作用。N6-甲基腺苷(M6A)修饰现在被认为是RNA功能的主要驱动力,以维持癌细胞的动态平衡。

2021-09-24

研究人员发表无痕蛋白质法合成方法

从化学本质分析,蛋白质是胺基单元通过碳氮成键反应形成的生物大分子。因此,蛋白质的人工合成关键在于碳氮成键反应的精准控制。近年来,以多肽固相合成与特异性拼接为核心的蛋白质合成和修饰技术蓬勃发展,打破了核糖体合成系统仅能使用天然及少数非天然氨基酸的瓶颈。蛋白质人工合成技术能实现各种类型的化学修饰,拓宽了人类在原子水平上人工构筑蛋白质的可能性。而目前主流的多肽拼接

2021-09-17

Mol Ther Nucleic Acids:氨基酰- trna合成在心血管疾病中的调节作用

氨基酰-tRNA合成酶(ARSs)在生物体内广泛存在,它能激活氨基酸,使其通过酯键与tRNA结合,形成相应的氨基酰-tRNA。

2021-09-25

研究人员挖掘高活性CRISPR转座用于正交多重编辑

  国际学术期刊Nucleic Acids Research在线发表了中国科学院分子植物科学卓越创新中心杨晟研究组的研究成果。该研究挖掘到一种高活性新型CRISPR相关转座酶(CASTs)。设计与调试微生物细胞工厂常需要中断一批基因和/或调试一批基因的最优剂量比。基于CRISPR-Cas9的基因组编辑工具受限于同源重组效率,难以同时编辑4

2021-09-11

Green Chemistry:发表多级联合成L-丙氨酸的研究成果

  近日江南大学生物工程学院周哲敏教授团队在L-丙氨酸的绿色合成方面取得突破,研究成果“Biosynthesis of L-alanine from cis-butenedioic anhydride catalyzed by a triple-enzyme cascade via a genetically modified strai

2021-09-10

Analyst:研制出便携式病原体核酸分析系统

近期,中国科学院合肥物质科学研究院安徽光学精密机械研究所生物医学光学研究团队利用微流控芯片和智能手机构建了一种便携式病原体核酸即时检测系统,可通过智能手机用户端,简便、准确、快速完成病原体核酸的即时检测。相关成果已被Analyst作为封面文章接收发表。近些年来,基于微流控芯片和智能手机的移动传感技术(MS2技术),被广泛用作移动实验室的生化检测和分析,如疾病

2021-08-27

2021服贸会心血管领域论坛召开,小干扰核酸药物引领心血管治疗革命

  2021年9月3日,长期以来,心血管疾病是威胁我国国民健康的“第一杀手”,以心血管疾病为首的慢病防治与管理已成为“健康中国2030”的工作重点之一。

2021-09-03

M6A去甲基化FTO通过去甲基化PJA2和抑制Wnt信号抑制胰腺癌的发生

胰腺癌是消化系统最致命的恶性肿瘤,也是全球癌症相关死亡的第七大常见原因。胰腺癌的发病率和死亡率持续增加,其5年生存率仍然是所有癌症中最低的。

2021-09-16