打开APP

Nature:揭示染色质调节导致多样化抗体产生机制

2020年11月19日讯/生物谷BIOON/---我们需要各种类型的抗体来协助抵御外来病原体的入侵,而我们的基因组经过精巧的调整,可以产生这些抗体来满足新出现的需求。在一项新的研究中,来自美国国家卫生研究院(NIH)、波士顿儿童医院和哈佛医学院等研究机构的研究人员发现不仅我们的DNA,而且它的结构和包装,协助我们产生多样化的抗体。相关研究结果近期发表在Nat

2020-11-19

研究揭示转座子在近着丝粒异染色质区调控机制

异染色质是指基因组中用DAPI染色较深、相对不开放的区域。这类区域被认为是基因组中的“黑洞”。以往研究认为,异染色质的基因组通常处于沉默状态。随着转录组学测序技术的发展,研究发现异染色质并非一直保持沉默。基因组学研究发现,细胞间期异染色质的稳定可以保证基因组结构的稳定。分裂期的异染色质,尤其是位于着丝粒区域以及近着丝粒区域的异染色质,其稳定性可帮助遗传信息在

2020-11-21

研究发现电离辐射引起核内染色质结构调控证据

 染色质是真核生命遗传物质DNA在细胞核内的存在形式,染色质根据细胞的活动状态和响应过程,如DNA复制、基因转录、DNA损伤响应和修复等,进行结构调节。染色质结构受电离辐射发生双链断裂(DSB)后的解聚现象已有报道,但是学界缺乏关于核内原位的染色质结构改变的证据支持,DNA发生双链断裂后,损伤响应和修复蛋白形成的修复聚合体亚结构图像亦不清楚。近日,

2020-11-05

研究观测染色质重塑中DNA的B-Z构象转变

 近年来,Z型DNA(Z-DNA)的研究引发关注,但是在细胞中对其进行观测还存在困难,主要原因是缺少一种简便可靠的手段对其进行直接观测。最近,中国科学院合肥物质科学研究院智能机械研究所研究员黄青课题组与郑州大学张凤秋课题组合作,利用红外光谱技术观测并研究染色质重塑中DNA的B-Z构象转变,相关研究成果发表在Analytical Chemistry上

2020-11-01

两篇Science论文构建出胎儿基因表达和染色质可及性的人类细胞图谱,有助揭示人细胞生长和发育机制

2020年11月16日讯/生物谷BIOON/---在两项新的研究中,来自美国华盛顿大学医学院和布罗特曼-巴蒂精准医学研究所等研究机构的研究人员构建出两个细胞图谱,用于追踪人类细胞类型和组织发育过程中的基因表达和和染色质可及性(chromatin accessibility,也译为染色质可访问性)。其中的一个细胞图谱绘制了15种胎儿组织中单个细胞内的基因表达,

2020-11-16

研究揭示开放核小体导致染色质松散的分子机制

 常规核小体的结构包括一个由四种组蛋白H2A、H2B、H3、H4组装而成的蛋白核心,一条在组蛋白核心上缠绕1.6圈、长度为147 bp的双链DNA。核小体具有稳定的结构,对DNA组成和组蛋白修饰的改变均不敏感。组蛋白变体可改变核小体和染色质结构调控基因转录,在迄今测定的所有单核小体结构中,组蛋白H3变体核小体是构象改变最大的CENP-A核小体,结构

2020-10-23

Cell:揭示新冠病毒S蛋白RBD结构域的中和位点和免疫显性位点

2020年9月23日讯/生物谷BIOON/---新型冠状病毒SARS-CoV-2导致2019年冠状病毒病(COVID-19),如今正在全球肆虐。目前人们迫切需要一种有效的预防疫苗来对抗这种病毒。然而,目前还没有针对SARS-CoV-2的人类疫苗,但大约有120种候选疫苗正在研发中。SARS-CoV-2与另外两种密切相关的高致病性病毒SARS-CoV和 MER

2020-09-23

揭示染色质抑制cGAS从而阻止自身免疫反应机制

2020年9月16日讯/生物谷BIOON/---在高等生物中,检测到细胞质中的DNA会引发免疫反应。感知“错位”DNA的酶也存在于细胞核中,但细胞核DNA没有这样的效果。如今,在一项新的研究中,来自德国慕尼黑大学的研究人员报告了为何会这样。相关研究结果于2020年9月10日在线发表在Nature期刊上,论文标题为“Structural basis for s

2020-09-16

结构域边界插入来调节基因组的空间折叠

 北京时间2020年8月31日晚23时,美国费城儿童医院和宾夕法尼亚大学医学院的Gerd Blobel教授,其实验室的张帝(Di Zhang),和他们的合作者在Nature Genetics上发表了题为Alteration of genome folding via contact domain boundary insertion的论文,报道了通

2020-09-03

地钱中TCP家族转录因子活性与染色质三维构象变化相关

  基因组学的研究不应止步于从基因组序列或表观遗传修饰中获得信息,深入挖掘三维染色质折叠对于了解基因组功能同样至关重要。近十年来,高通量测序技术的进步和高分辨率成像技术的发展使得基因组复杂的三维结构组织形式日益清晰的呈现在人们眼前。其中,利用Hi-C(high-throughput chromosome conformation capt

2020-09-11