光和微生物联合作用下浅水湖泊水体中植物残体降解研究取得进展
水生植物是湖泊生态系统中的重要组分,在净化水质、恢复水体生态功能等方面发挥重要作用。随着全球气候变暖、湖泊富营养化、沼泽化过程以及生态修复技术的推广运用,促进了湖泊中浅水区域中挺水等高等水生植物的生长。每到秋冬季水生植物大量衰亡,植物残体分解过程对湖泊系统生源要素循环有重要影响,甚至会导致草源性“湖泛”污染现象。因此,深入认识浅水湖泊中水生植物残体降解机理,
PROTAC利剑出鞘:STAT3特异性小分子降解剂抑制肿瘤生长
STAT3(Signal transducer and activator of transcription 3)是STAT家族的成员之一,对多种细胞因子、生长因子等等信号进行响应并激活下游基因的表达。STAT3调节与癌细胞中与存活、增殖、生成、侵袭、转移,耐药性和免疫逃避相关的基因【1】,STAT3的异常调节会造成多种人类癌症以及其他的人类疾病。因此,一直以来STAT3都被认为是癌症
研究解析高CO2浓度条件下参与大豆光合碳转化和残体降解的细菌群落结构变化特征
大气二氧化碳(CO2)浓度升高可促进植物的光合作用过程,改变植物光合碳向土壤中释放的质和量,进而显着地影响陆地生态系统的碳储量。光合碳进入土壤后经土壤微生物途径向不同方向转化,因此,微生物对植物光合碳向陆地生态系统碳分配具有重要作用。解析高CO2条件下参与光合碳转化的微生物群落特征是明确未来气候变化与土壤碳转化关系的核心所在。另一方面,CO2浓度升高会改变植物残体内物质组成(例如C/N、纤维素、木
PROTAC疗法首批临床结果出炉 蛋白降解疗法耐受性出色
今日,蛋白降解疗法领域的知名企业Arvinas公布了其PROTAC疗法的最新数据。在两项1期临床试验中,其领先疗法ARV-110和ARV-471均取得了良好的耐受结果。Arvinas所开发的PROTAC疗法是一种新颖的蛋白降解技术。它能使用小分子药物,一头靶向目标蛋白,另一头让E3连接酶与目标蛋白接触,促进后者的降解。通过这种方法,我们能特异性地降解特定的致病蛋白。Arvi
降解靶点治癌症,Kymera公布临床前研究数据
Kymera Therapeutics Inc.是一家位于美国麻省剑桥市致力于发展蛋白降解治疗技术的公司。该公司今天宣布将在即将于波士顿举行的AACR-NCI-EORTC分子靶标和癌症治疗国际会议上展示选择性STAT3降解物临床前数据。 STAT3是一种致癌转录因子,受多种信号事件(包括IL-6-JAK途径和生长因子受体)调控。 STAT3的激活突变和异常激活已直接与促进
Adv Health Mat:研究开发可降解的微米抗癌机器人
2019年9月18日讯 /生物谷BIOON /——韩国Daegu Gyeongbuk科学技术研究所(DGIST)机器工程系和DGIST-ETH微机器人研究中心(DEMRC)的Hongsoo Choi教授的研究团队在成功研发出一种生物可降解的微型机器人,可以进行热疗和控制药物释放。本研究可以更精确、系统地通过热疗和药物控释治疗癌症,有望提高抗癌治疗的安全性和效率。抗癌治疗可以通过多种方式进行,如药物
岸谷纳米进军医美市场,医用可吸收生物降解材料或将成为“宠儿”
生物医学材料是以医疗为目的,用于与生物组织接触以形成功能的无生命材料,包括生物医用高分子材料,生物医用陶瓷材料,生物医用金属材料和生物医用复合材料等等。由于生物医学材料可通过组成和结构的控制而使得材料具有不同的物理和化学性质,来满足不同的需求,耐生物老化,作为长期植入材料具有良好的生物稳定性和物理,机械性能,易加工成型,原料容易得到,因此,受到广大科研工作者的关注,生物医学材料的应用已遍及整个医学
首个持续释放生物可降解植入物产品bimatoprost SR(比马前列素缓释)申请上市
2019年07月18日/生物谷BIOON/--艾尔建(Allergan)是一家拥有超过70年眼睛护理历史的全球领先制药公司。近日,该公司宣布,美国食品和药物管理局(FDA)已受理眼科药物比马前列素(bimatoprost)缓释剂(SR)的新药申请(NDA)。如果获得批准,bimatoprost SR将成为一款首创的(first-in-class)、持续释放的、生物可降解植入物,可用于降低原发性开角
我国学者研制出可降解新型肿瘤诊疗制剂
近期,合肥工业大学科研团队成功研发一种新型超小纳米铼制剂,具有优良的可降解性和生物相容性,实现了肿瘤的安全有效诊断和治疗。相关成果发表于英国皇家化学会期刊《化学科学》,并被推荐为当期封面文章。据介绍,由于具有等离子体共振效应,纳米金等贵金属纳米材料在肿瘤的诊断和治疗领域展现出良好的应用前景。然而,目前贵金属纳米材料不易生物降解,存在长期滞留在体内的风险,阻碍了其进一步的临床转化。研究发
绿藻和蓝藻浮游植物中存在的难降解脂肪族生物聚合物研究获进展
干酪根是分散在沉积岩中的不溶性大分子有机质,是迄今为止地球上有机质最为丰富的存在形式,但是,其来源、组成和结构,仍然非常不清楚;因为藻类(如绿藻和沟鞭藻等)中能够产生藻质素的物种数量相对较少,所以干酪根通过藻质素选择性保存的形成机制还存在一些不确定性。藻类可通过难降解生物聚合物(藻质素或类藻质素)的选择性保存作用成为沉积物和沉积岩中的干酪根前体,这是因为它们对微生物和化学降解具有很高的抵抗力。虽然