打开APP

Cell:揭示强大的新技术允许研究蛋白在细胞内如何改变形

由于缺乏良好的蛋白工作成像方法,对蛋白动力学的深入理解通常是难以捉摸的。如今,在一项新的研究中,来自美国北卡罗来纳大学教堂山分校的研究人员首次发明了一种方法,可以使这一领域向前迈出一大步。

2021-10-31

基于聚集诱导发光碳点凝胶的仿章鱼协同变形变色运动机器人研究中获进展

  自然界中,许多生物通过进化,不断增强自身适应环境的能力,从而利用协同的形状变形、颜色变化和运动,拥有在不同环境中交流、伪装等能力。科学家尝试设计智能人工材料(特别是具有类生物组织性能的软湿聚合物凝胶)来复制多功能协同行为,这将有利于理解自然的多功能协同行为,并可整合和升级受生物启发的多功能机器人。然而,实现高等生物的三功能协同或多功能

2021-08-09

感染变形虫的巨病毒也能将它们的DNA组装成类似核小体的结构

2021年7月30日讯/生物谷BIOON/---对于一些巨病毒(giant virus)来说,一种DNA包装技巧可能对它们的感染性至关重要。称为Marseilleviridae的变形虫感染病毒(Amoeba-infecting virus)将它们的DNA缠绕在它们自己编码 的组蛋白上,就像线轴上松散地包裹着的线。在一项新的研究中,美国霍华德-休斯医学研究所研

2021-07-30

科学家开发出变形式碱基编辑新系统

  Nature Cell Biology在线发表了中国科学院上海营养与健康研究所研究员杨力课题组与合作者在碱基编辑研究领域发布的最新进展——Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations。碱基编辑器(base

2021-05-14

研究揭示细胞内体运输途径中SNX1诱导膜变形分子机制

   近日,中国科学院生物物理研究所生物大分子国家重点实验室研究员孙飞课题组在膜动态分子机制研究方面的最新研究成果以Structural insights into membrane remodeling by SNX1为题,在线发表在Proceedings of the National Academy of Sciences

2021-03-08

Nature子刊:为了对付抗生素,细菌竟上演“变形记”

  众所周知,抗生素是具有抑菌或杀菌作用的药物,但主要针对的是已知的细菌策略(机制)。对于细菌来说,想要在充满抗生素的世界里活下去,就必须要具备一些能有效应对压力的技能:要么与另一种细菌“勾搭”弄来一些特别的遗传物质;要么通过代际产生遗传变异,从而获得新特性以让抗生素逐渐失效。在这些已知策略下,抗生素可以发挥一定的杀菌作用。然而,“道高一

2021-02-18

Nature:斑马鱼研究揭示脊椎变形背后的机制

Zinani是UC和辛辛那提儿童医院医学中心儿科副教授ErtuğrulÖzbudak博士实验室的科学家团队的成员。该团队正在研究一种导致先天性脊柱侧弯的基因突变,这种突变是一种先天性缺陷,其特征是椎骨和混乱的肋骨分离失败。斑马鱼卵能够在母亲体外受精并发育,这使得研究人员更容易进行高分辨率成像。

2021-01-27

水凝胶可编程化智能变形领域取得进展

 自然界中种类繁多的动植物不仅有着纷繁多变的形态,而且能根据外界环境的变化而改变自身的形态。水凝胶由于其软、湿特性,长期以来被认为是智能仿生的理想材料之一,并被用于软体机器人、组织工程及药物递送等诸多领域。目前,水凝胶驱动器实现智能变形的方式主要有形状记忆与驱动两种,形状记忆水凝胶需在外力的作用下变形,并在外界刺激下通过可逆作用的形成固定其临时形状

2020-11-01

没有鞭毛也无需变形,人类白细胞通过“分子桨”来游泳

细胞进化出不同的策略来迁移和探索它们的环境。例如,精子细胞、微藻和细菌可以在变形中游动,或者通过一种叫做鞭毛的鞭状附属物游动。相比之下,哺乳动物体细胞是通过附着在表面和爬行来迁移的。人们普遍认为,白细胞不附着在二维表面就不能在二维表面迁移。此前,科学家们发现,某些被称为中性粒细胞的人类白细胞能够游泳,但没有证明其机制。他们还发现,小鼠的白细胞可以被人工诱导去

2020-09-20

PLOS ONE:胎儿出生过程中脑袋会被挤变形

2019年5月18日讯 /生物谷BIOON /——科学家利用核磁共振成像技术(MRI)捕捉到三维图像,显示出婴儿在分娩前通过产道时大脑和头骨的形状是如何变化的。法国克奥弗涅大学的Olivier Ami和他的同事于2019年5月15日在《PLOS ONE》上发表了这些最新研究成果。医生们早就知道婴儿的头在出生时会改变形状,这些变化被称为"胎儿头部成型",发生在分娩的第二阶段--即婴儿离开子宫并通过产

2019-05-18