打开APP

其健康与否或与胆固醇的颗粒大小有关!

2021年3月5日 讯 /生物谷BIOON/ --因能将沉积在动脉中的胆固醇运动到肝脏中进行清除,HDL胆固醇(高密度脂蛋白胆固醇)或有益胆固醇往往与人群心血管疾病风险降低相关,这就与所谓的有害胆固醇(LDL胆固醇,低密度脂蛋白胆固醇)形成了鲜明的对比,LDL胆固醇会促进胆固醇在动脉中积累并增加机体患心血管疾病的风险;尽管降低LDL胆固醇的药物能降低个体患心

2021-03-04

中美科学家或有望利用中药雷公藤提取物雷公藤内酯酮开发出新型非激素类男性避孕药!

2021年3月3日 讯 /生物谷BIOON/ --在目前所有可用的避孕方法中,口服避孕药依然是最受人们欢迎的,然而,避孕药仅对女性有效,经过了近半个世纪的研究努力,目前科学家们并未成功开发出一款针对男性的非激素类避孕药;科学家们在这一领域未能取得重大进展的部分原因在于他们并未完全理解男性精子的发生以及精子的生物学特性;比如,很多人认为男性避孕药应将精子的数量

2021-03-03

中山大学生科院研究发现:   小分子中药阿可拉定下调肝癌髓源免疫抑制细胞(MDSC)的产生和激活

 近日,中山大学生命科学院李莲博士实验室和郑利民博士实验室在国际免疫学学会联合会(IUIS)官方杂志《Frontiers in Immunology》(htpps//doi.org/10.3389/fimmu.2021.609295)在线发表阿可拉定免疫调节抗肿瘤作用机制研究成果“Icaritin Induces Anti-tumor Immune

2021-03-01

超小氧化铁纳米颗粒放大肿瘤成像信号研究获进展

   近日,国家纳米科学中心研究员陈春英课题组在利用乏氧组装的超小氧化铁纳米颗粒放大肿瘤的荧光和磁共振成像信号研究中取得进展。相关研究成果以Hypoxia-Triggered Self-Assembly of Ultrasmall Iron Oxide Nanoparticles to Amplify the Imaging S

2021-02-01

研究揭示烟炱颗粒光催化自氧化增强健康损伤

  烟炱(soot)是碳质燃料(如煤、油、秸秆等)不完全燃烧的产物。从工厂或汽车尾气中排放到大气中的烟炱是大气气溶胶的重要组分,传统研究认为烟炱颗粒是由元素碳(EC)构成的碳核和外面包裹的有机碳(OC)构成,在大气传输过程中会发生化学反应而老化,具有负面健康效应和气候效应。受限于已有认知和分析手段,目前对烟炱碳核的微观结构特性仍未明晰,对

2021-01-15

研究发现大气颗粒物暴露引起血清脂肪因子降低

  近日,美国糖尿病学会和BMJ联合出版的BMJ Open Diabetes Research & Care在线发表了北京大学环境科学与工程学院朱彤教授课题组的最新研究成果“Associations between changes in adipokines and exposure to fine and ultrafine p

2021-01-04

嵌合纳米颗粒可针对一系列冠状病毒产生交叉免疫反应,有望开发出通用冠状病毒疫苗

2021年1月16日讯/生物谷BIOON/---引起大流行的SARS-CoV-2病毒只是冠状病毒家族中许多不同病毒中的一种。这种病毒家族中的许多成员在蝙蝠等动物种群中传播,并有可能像SARS-CoV-2一样,“跳到” 人类群体中。美国加州理工学院生物学与生物工程教授Pamela Björkman及其团队正在致力于开发针对一系列相关冠状病毒的疫苗,目

2021-01-16

中药来源阿可拉定:小分子免疫调节抗肿瘤作用机制研究新进展

 近日,国际知名免疫学期刊欧洲免疫学杂志(European Journal of Immunology)在线发表阿可拉定免疫调节抗肿瘤作用机制研究成果 “Icaritin inhibits PD-L1 expression by targeting IκB Kinase α” (DOI: 10.1002/eji.202048905)。阿可拉定是北京

2021-01-04

开发出可穿过血脑屏障将药物递送到大脑的纳米颗粒,有望治疗一系列神经退行性疾病

2021年1月6日讯/生物谷BIOON/---在过去的几十年里,科学家们已经确定了导致神经退行性疾病的生物途径,并开发了针对这些途径的有前途的分子制剂。然而,将这些发现转化为临床批准的治疗方法的进展速度要慢得多,部分原因是人们在将治疗药物穿过血脑屏障(blood-brain barrier, BBB)并送入大脑方面所面临的挑战。为了促进治疗药物成功地递送到大

2021-01-06

细胞应激颗粒中的mRNA确实可以表达蛋白

2020年12月16日讯/生物谷BIOON/---就像人一样,细胞也会遭受应激。突然的氧气下降、过热或毒素都会引发一连串的分子变化,导致细胞停止生长,产生应激保护因子,并形成应激颗粒(stress granule)---蛋白和RNA分子挤在一起形成的无膜细胞器。虽然应激颗粒的功能在很大程度上仍然是未知的,但人们认为它们只含有不被翻译成蛋白的RNA。如今,一项

2020-12-16