打开APP

美国FDA优先审查Brilinta+阿司匹林:首个降低高危患者卒中风险的双效抗血小板疗法!

与阿司匹林相比,Brilinta+阿司匹林显著降低卒中+死亡复合终点风险。

2020-07-10

全球首个FDA批准用于治疗CLD相关血小板减少症的口服TPO-RA类药物苏可欣®中国上市

 2020年7月4日,上海复星医药(集团)股份有限公司(简称:复星医药;股票代码:600196.SH,02196.HK)今日宣布,其首个引进的小分子创新药苏可欣®(通用名:马来酸阿伐曲泊帕片,简称“阿伐曲泊帕”)在中国上市.

2020-07-04

发热伴血小板减少综合征病毒聚合酶L蛋白冷冻电镜结构研究获进展

2010年,我国首次发现了一种新的致病性病毒病原——发热伴血小板减少综合征病毒(severe fever with thrombocytopenia syndrome virus, SFTSV),它能感染人导致严重的发热和血小板减少综合征疾病,致死率为5%-30%。SFTSV属于布尼亚病毒目(Bunyavirales)白纤病毒科(Phenuiviridae)

2020-05-02

Cell:揭示caspase-6是先天免疫、炎性体激活和宿主防御的关键调节因子

2020年4月18日讯/生物谷BIOON/---在一项新的研究中,来自美国圣犹大儿童研究医院的研究人员鉴定出一种神秘的酶---caspase-6---的之前未知的功能。他们发现caspase-6是先天免疫、炎性体激活和宿主防御的关键调节因子。对caspase-6进行调控可能有利于治疗流感等病毒性疾病和包括癌症在内的其他炎症性疾病。相关研究结果于2020年4月

2020-04-18

原发性免疫性血小板减少症(ITP)新药!和铂医药FcRn靶向抗体HBM9161获批启动无缝II/III期临床!

2020年04月16日讯 /生物谷BIOON/ --和铂医药(Harbour BioMed)近日宣布,中国国家药品监督管理局(NMPA)已批准其治疗性抗体HBM9161的新药临床试验申请(IND),启动一项无缝设计的II/III期临床试验,评估HBM9161治疗成人免疫性血小板减少症(ITP)的安全性和有效性。该批准允许在II期试验后首个中期分析后直接进入I

2020-04-16

日本研制出可以给任何人输血的血小板

 据《日本经济新闻》报道,日本京都大学iPS细胞研究所的江藤浩之教授等人与熊本大学合作,成功制作出可以给任何人输血的血小板。研究人员把基因编辑技术和iPS细胞相结合起来实现了此次研究。通过小白鼠实验,研究团队确认了输血后血小板可以起到作用,这一研究有望用于治疗即使输入了血小板也无法产生作用的“血小板输入无效症”。血小板制剂通常是输入给患有血小板减少

2020-03-03

赛诺菲Cablivi获加拿大批准,治疗获得性血栓性血小板减少性紫癜(aTTP)!

2020年3月5日讯 /生物谷BIOON/ --赛诺菲(Sanofi)近日宣布,加拿大卫生部(Health Canada)已通过优先审查程序批准纳米抗体药物Cablivi(caplacizumab),联合血浆置换和免疫抑制疗法,用于获得性血栓性血小板减少性紫癜(aTTP)成人患者的治疗。aTTP是一种罕见的血液疾病,会引起全身血管形成血栓,可能导致重要器官受

2020-03-05

罗氏王牌生物制剂Rituxan再添新适应症,治疗获得性血栓性血小板减少性紫癜(aTTP)!

2020年02月23日讯 /生物谷BIOON/ --罗氏(Roche)控股的日本药企中外制药(Chugai)与日本全药工业株式会社(Zenyaku Kogyo)近日联合宣布,日本厚生劳动省(MHLW)已批准Rituxan(美罗华,通用名:rituximab,利妥昔单抗)100mg和500mg注射剂一个新的适应症,用于治疗获得性血栓性血小板减少性紫癜(aTTP

2020-02-23

Blood:红细胞微泡激活接触系统激活凝血因子IX的两条途径

储存损伤诱导的红细胞衍生微泡(RBC-MVs)通过支持凝血酶原复合物的组装来促进凝血。也有报道称RBC-MVs通过固有途径启动凝血。为了阐明RBC-MVs诱导的凝血激活机制,研究人员在缓冲系统中评估了储存损伤诱导的RBC-MVs激活内源性凝血途径中的每个酶原的能力。与此同时,还采用凝血酶生成(TG)试验评估了它们在血浆中启动凝血的能力。RBC-MVs直接激活凝血因子XII(FXII)或前激肽释放酶

2020-02-05

研究揭示促肾上腺皮质激素释放因子受体的激活机制

促肾上腺皮质激素释放因子受体(Corticotropin-Releasing Factor Receptors) CRF1R和CRF2R是B类GPCR的重要成员,在中枢和外周神经系统中广泛表达,主要通过偶联下游Gs蛋白参与体内内分泌系统、行为系统和免疫系统的压力应答。研究表明,CRF1R可能与压力导致的酗酒和药物滥用相关。CRF1R和CRF2R在体内被内源性

2020-02-05