基于CR3520 CIEF-MS的尿白蛋白分析及其临床应用研究
膜性肾病(MN)是全世界原发性肾小球疾病的最常见原因之一。M型磷脂酶A2受体(PLA2R)被证明是一类非常有效的生物标志物,在70%以上的特发性膜性肾病(IMN)病例中表达,现已被广泛的应用于临床诊断。但是PLA2R在区分原发与继发MN上表现不佳。 本研究在此前尿蛋白检查的基础之上,采用CR3520毛细管等电聚焦质谱法(CR3520 CIEF-MS)对原发性和继发性MN患者的尿白蛋白进行了表征。 本研究发现尿白蛋白的种类在不同的MN患者尿中存在显著差异,这一差异在膜性肾病亚型分型中具有潜在的应用前景。 此外,使用CR3520 CIEF-MS进行尿蛋白分析也将有益于许多其他类型的肾脏疾病(例如慢性肾脏病,糖尿病肾病等)病理,预后和诊断的研究。
USC发布会V2
细胞外基质(ECM)的研究现状与展望
细胞外基质的结构比我们想象的还要复杂. 细胞外基质成分的作用是什么?它是如何影响细胞的?我们对细胞外基质有足够的了解吗?在这里,ROKIT HealthCare将给我们呈现所有关于细胞外基质的问题,从而揭示为什么细胞外基质研究如此重要!
Hi-C技术在医学领域的应用
Hi-C是高通量染色体构象捕获(High-throughput Chromosome Conformation Capture, Hi-C)技术的简称,是由美国Job Dekker研究团队于2009年开发,最初用于捕获全基因组范围内所有的染色质内和染色质之间的空间互作信息,经过近几年的飞速发展,现已应用于基因表达的空间调控机制研究、构建染色体水平参考基因组、构建单体型图谱等方向。在后基因组时代,基因组学研究已全面进入3D时代。
Hi-C技术在微生物中的应用
Hi-C是高通量染色体构象捕获(High-throughput Chromosome Conformation Capture, Hi-C)技术的简称,是由美国Job Dekker研究团队于2009年开发,最初用于捕获全基因组范围内所有的染色质内和染色质之间的空间互作信息,经过近几年的飞速发展,现已应用于基因表达的空间调控机制研究、构建染色体水平参考基因组、构建单体型图谱等方向。在后基因组时代,基因组学研究已全面进入3D时代。
疫情下PCR实验移液难题解决方案及实验室自动化
新冠疫情仍在全球蔓延,截止目前为止,核酸检测法由于其准确性高特异性强仍然为主流检测方法。作为核酸检测的核心方法PCR中63%的工作都是移液操作,移液对于PCR实验成败十分重要。您是否遇到PCR的污染问题,标准曲线制作,模板上样的准确性问题,384孔板PCR如何移液,Mix铺板分液问题。新冠病毒肆虐,大批量样品同时涌入实验室,您是否一筹莫展,焦急万分,如何提高实验室自动化水平?这些问题我们将一一为您展开分析并给出解决方案。
单细胞分析主题之ICP-MS/MS创新应用网络讲座
题目一:《ICP-MS在单细胞水平金属相关分析研究应用新进展》 在单细胞中金属及其形态(聚集态)分析领域以下几个方面的研究进展: 1.基于流式进样,采用时间分辩ICP-MS对单细胞(Hela)铬形态Cr(III)和Cr(VI)的摄取进行研究及其胞内分布进行分析; 2.通过采用一种三维微交叉液滴发生系统与时间分辨ICP-MS在线联用系统,对单个细胞对金纳米粒子的摄取及胞内分布进行测定,从而揭示了MCF-7细胞在摄取金纳米粒子时存在的明显异质性研究的进展; 3.借助流体的惯性效应,通过平面和三维螺旋通道-惯性流辅助,操控粒子的运动路径,从而实现单细胞/颗粒排列,以及高通量单细胞进样。结合ICP-MS对单细胞对金属纳米粒子的摄取及分布进行研究和分析。 题目二:《ICP-MS在人体细胞多元素分析中的应用》 近年来,国内外有很多学者采用ICP-MS技术进行生物体中单细胞的分析,利用ICP-MS对于超痕量元素的检测能力,对于单个细胞中的特定元素进行有效的定量和研究。S和P作为生物体细胞中的重要元素组成,在进行ICP-MS分析时受到严重的多原子离子干扰,本报告采用ICP-MS/MS技术,利用该仪器两级串联质谱的质量筛选功能,以及多元素同时扫描的方式,分别对大鼠红细胞以及人体细胞中的S和P进行测试,通过与商品化细胞的参考值进行比对,证明了该方法对于定量单细胞中的元素含量具有良好的准确性。
RNAsCope原位杂交技术对复杂组织进行空间表达分析
RNAsCope和BaseSCope原位杂交(ISH)广泛应用于人类样本库和临床科研以及临床前动物模型等组织中的高分辨率目标RNA表达分析。ACD的RNA-ISH检测在临床实验研究中是有效的,能够在复杂的组织微环境中进行定量的、细胞特异性的表达分析。 RNAsCope和相关ISH技术的应用进展包括: - 固定组织中RNA的单分子检测 - 空间、多重RNA-ISH用于RNAseq转录组学的验证 - SARS-CoV-2及其他病毒病原体检测 - 实体瘤组织中CAR-T细胞的检测 - AAV基因治疗的生物分布
CUT&RUN技术的成功指南
与染色质免疫沉淀 (ChIP) 检测一样,核酸酶靶向切割和释放 (CUT&RUN) 是一项用于在细胞天然染色质环境下检测蛋白-DNA 相互作用的强大通用技术 (1-4)。这种测定法可用于检测与基因组某个特定区域有关的多种蛋白,或相反,用于检测与某种特殊蛋白有关的基因组的多个区域。此外,CUT&RUN 测定法可用于明确某种特殊蛋白-DNA 相互作用的空间和时间关系。例如,CUT&RUN 检测可用于确定各种蛋白因子被募集到某个基因启动子上的特定顺序,或用于“测定”基因激活期间整个基因位点上某种特殊组蛋白修饰的相对量。除了组蛋白,CUT&RUN 测定法还可用于分析转录因子和辅因子结合、DNA 复制因子和 DNA 修复蛋白的结合。 CUT&RUN 提供了一种检测细胞中蛋白-DNA 相互作用的快速、可靠且真正的低细胞数测定法。与 ChIP 实验不同,CUT&RUN 不存在甲醛交联、染色质碎裂和免疫沉淀,使之成为一种使蛋白-DNA 相互作用富集和检测靶基因的更快且更有效的方法。CUT&RUN 可在一天之内完成从活细胞到纯化 DNA 的过程,且经证明每次检测只需使用少至 500-1000 个细胞 (1,2)。和 ChIP 中碎裂所有细胞染色质不同,CUT&RUN 利用一种染色质抗体靶向消化方法,从而使背景信号比 ChIP 实验低得多。因此,CUT&RUN 仅需 ChIP-seq 检测所需测序深度的 1/10 (1,2)。最后,加入简单的Spike-in DNA 即可准确定量和标准化靶标蛋白结合,而这是 ChIP 方法无法实现的。这种方法可有效标准化样品间和实验间的信号。 我将讨论CUT&RUN的基本原理,以及在设计实验时需要考虑的重要因素。此外,我还将介绍Cell Signaling TeChnology(CST)的CUT&RUN Assay Kit(#86652)和CUT&RUN pAG-MNase酶,相关数据显示它能适用于多种细胞类型的组蛋白修饰,转录因子和转录辅助因子的研究。 参考文献 1.Skene, P.J. and Henikoff, S. (2017) Elife 6, pii: e21856. doi: 10.7554/eLife.21856. 2.Skene, P.J. et al. (2018) Nat ProtoC 13, 1006-19. 3.Meers, M.P. et al. (2019) Elife 8, pii: e46314. doi: 10.7554/eLife.46314. 4.Meers, M.P. et al. (2019) Mol Cell 75, 562-575.e5. 研讨会PPT下载链接:http://learn.Cst-C.Com.Cn/zh-Cn/ppt-download-Cut-run
蓝柯【COVID-19研究进展简介】
为了更广泛地分享武汉大学专家和校友在新冠病毒研究和疫情战斗中成果和经验,以科学的态度传播科学知识,帮助理解新冠肺炎治疗策略,并以此推动全球有关新冠病毒和疾病的研究,为最终战胜此次疫情和对未来新型新发传染病的防治作出贡献。武汉大学特邀请国内外相关领域杰出校友和专家举办“武汉大学新冠病毒和疾病系列学术讲座”。 讲座时间:5月30日-8月11日 主办单位:武汉大学医学部、武汉大学校友总会 承办单位:泰康公共卫生及流行病防治基金、武汉大学北京校友会、武汉大学医学部海外校友会