新功能、新界面、新体验,扫描即可下载生物谷APP!
首页 » 非编码RNA » Sci Rep:科学家成功利用人工RNA编辑技术修复基因组遗传代码 有望治疗多种遗传性疾病

Sci Rep:科学家成功利用人工RNA编辑技术修复基因组遗传代码 有望治疗多种遗传性疾病

来源:本站原创 2020-10-24 22:33

2020年10月24日 讯 /生物谷BIOON/ --目前并没有确定的疗法来治疗由点突变引起的多种遗传性疾病,近日,一项刊登在国际杂志Scientific Reports上的研究报告中,来自日本先进科学技术研究所等机构的科学家们通过利用人工的RNA编辑研究了一种治疗手段在治疗遗传性疾病上的可行性和有效性。尽管基因编辑技术作为一种基因修复技术备受关注,但诸如CRISPR/Cas9基因编辑技术或许会导致基因组DNAs发生永久性的改变,其可能会影响多个潜在的位点,目前想要在体内对所有靶向细胞实现精准的基因组编辑是非常困难的,所以研究人员就有可能在受精卵、胚胎或细胞中开展基因编辑工作,然而,基因编辑技术或许并不适合用于在人类中进行的基因疗法,此外,对基因组的编辑也会产生一些伦理性的问题。

图片来源:Japan Advanced Institute of Science and Technology

研究人员认为,基因组编辑是一种适用于体外研究的方法,其或许还适用于对受精卵进行编辑,但目前仍然并不适用于患者机体;相反,RNA编辑所产生的改变并不是永久性的,因为其不会影响机体的基因组序列,而且能够按照序列特异性的方式来完成。因此,从治疗的目的来看,RNA的编辑比基因组编辑更加可取,人工定向的RNA编辑是一种重要的技术,其能修复基因并最终调节所编码蛋白质的功能,如今研究人员正在试图通过人工RNA编辑来修饰转录物的遗传密码,从而实现对遗传性疾病的治疗。

RNA编辑是生物体内广泛存在的一种生理性过程,其能通过单个基因产生具有不同功能的多种蛋白,在哺乳动物中,RNA链的C或A碱基能被碱基序列特异性地水解脱氨,即C被U替代,A被I(肌苷)替代。这些碱基的转换是A或C脱氨的结果,目前研究者发现ADAR和APOBEC家族中的酶类能催化这些碱基转换,随后还会改变RNAs中的遗传密码,这项研究中,研究人员首次利用APOBEC1成功进行了突变RNA中C-U的人工转换。

很多遗传性疾病都是由T-C的点突变引起的,因此,对突变基因进行编辑是治疗这些遗传性障碍的潜在策略,随后研究人员将APOBEC1的脱氨酶结构域和导向RNA(gRNA)结合设计出了一种新型的人工RNA编辑酶类,APOBEC1即载脂蛋白B mRNA编辑催化多肽1(apolipoprotein B mRNA editing catalytic polypeptide 1),而导向RNA则能与靶向的mRNA进行互补。

在人工酶系统中,gRNA能结合到MS2的茎环结构上,而且脱氨酶结构域能融合到MS2衣壳蛋白上,并能将突变的靶向核苷酸从C转换为U,作为靶向RNA,其能利用RNA编码的蓝色荧光蛋白(BFP),而BFP是由基因编码的GFP通过199T > C突变而来,当脱氨酶和gRNA瞬时表达后,研究者就能通过共聚焦显微镜观察到GFP的存在,这就表明,GFP中突变的199C已经转化为了U,从而就恢复了GFP的原始序列。

研究者表示,我们通过对感染细胞的cDNA进行PCR-RFLP(聚合酶链式反应—限制性片段长度多态性)和桑格测序证实了结果,揭示了其编辑效率能达到将近21%,深度RNA测序结果表明,该系统的脱靶效率较低;这样研究人员就能利用人工脱氨酶(APOBEC1)联合MS2系统开发出一种人工的RNA编辑系统,从而就有望通过在mRNA水平下恢复野生型序列来开发出治疗多种遗传性疾病的新型疗法。(生物谷Bioon.com)

原始出处:

Sonali Bhakta et al. RNA editing of BFP, a point mutant of GFP, using artificial APOBEC1 deaminase to restore the genetic code, Scientific Reports (2020). DOI: 10.1038/s41598-020-74374-5

本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
温馨提示:87%用户都在生物谷APP上阅读,扫描立刻下载! 天天精彩!


相关标签

最新会议 培训班 期刊库