Nature:揭示出补体C5a受体的三维结构
2018年1月7日/生物谷BIOON/---在一项新的研究中,来自英国Heptares治疗公司(Heptares Therapeutics Ltd.)的研究人员首次解析出补体C5a受体结合到一个被称作NDT9513727的小分子变构拮抗剂上时的高分辨率X射线晶体结构。相关研究结果发表在2017年1月4日的Nature期刊上,论文标题为“Structure of the complement C5a
Nature:首次获得机械激活的离子通道Piezo1的三维结构
2017年12月28日/生物谷BIOON/---在一项新的研究中,来自美国斯克里普斯研究所(TSRI)的研究人员解决了Piezo1的结构之谜。Piezo1是将触摸或血液流动等物理刺激转化为化学信号的一个蛋白家族的成员。这一发现为靶向治疗Piezo1发生突变的疾病(如遗传性口腔细胞增多症和先天性淋巴水肿)指明道路。相关研究结果于2017年12月20日在线发表在Nature期刊上,论文标题为“Stru
Nature:揭示出人上皮细胞钙离子通道TRPV6的三维结构
2017年12月28日/生物谷BIOON/---在一项新的研究中,来自美国哥伦比亚大学医学中心的研究人员首次获得一种能够让上皮细胞吸收钙离子的膜孔的详细结构图片。这一发现可能加快开发校正与乳腺癌、子宫内膜癌、前列腺癌和结肠癌存在关联的钙离子摄取异常的药物。相关研究结果于2017年12月20日在线发表在Nature期刊上,论文标题为“Opening of the human epithelial c
Cell:揭示出与阿尔茨海默病和癌症相关的酶ADAM10的三维结构
2017年12月22日/生物谷BIOON/---蛋白ADAM10在健康的细胞间通信中发挥着至关重要的作用,它的功能故障与神经退化、一些乳腺癌和哮喘存在关联。在一项新的研究中,来自美国哈佛医学院等研究机构的研究人员揭示出ADAM10的原子结构。他们的发现描述了一种阻止类似剪刀的ADAM10随意地切割蛋白的自动防故障机制。相关研究结果发表在2017年12月14日的Cell期刊上,论文标题为“Struc
pH响应型可设计蛋白质基三维微结构研究取得进展
微纳尺度的可控刺激响应生物基材料微结构对生物医药领域具有重要意义。尤其是具有精确定义的几何形貌和可重复性好的智能响应型微尺度结构与器件一直是研究热点。双光子聚合微纳加工作为一门新兴的微纳加工技术,为高精细三维微尺度结构的制备提供了有力工具,并可保证微尺度结构的几何形貌和制备可重复性。中国科学院理化技术研究所仿生智能界面科学中心有机纳米光子学实验室项目研究员郑美玲,与天津大学化工学院副教授邢金峰合作
Science:我国科学家解析出DNA修复关键组分Mec1-Ddc2的三维结构
图片来自中国科技大学,结构图:Guoyan Wang和Yanbing Ma;这种结构是基于酵母Mec1-Ddc2复合物(EMDB ID EMD-6708)的低温电镜图而获得的。2017年12月3日/生物谷BIOON/---细胞不断地复制以便修复和替换受损组织,而且每次细胞分裂都需要复制DNA。 当DNA复制时,错误不可避免地发生,这会造成DNA损害,如果不加以修复的话,那么这可能导致细胞死亡。作为
解析出紫红质通道蛋白2的三维结构
图片来自MIPT。2017年11月29日/生物谷BIOON/---紫红质通道蛋白2(channelrhodopsin 2, ChR2)是一种广泛用于光遗传学技术(optogenetics)的膜蛋白。光遗传学技术是一种相对较新的技术,涉及利用光来操纵活的有机体中的神经元和肌肉细胞。类似的方法已被用来部分地逆转听力/视力丧失和控制肌肉收缩。ChR2是一种主要的光遗传学工具。它是一种光敏蛋白,2003年
《自然》发文报道首个完整藻胆体的冷冻电镜三维结构
2017年10月19日,清华大学生命科学学院隋森芳教授研究组在《自然》(Nature)杂志上以长文(Research Article)形式在线发表题为《海洋红藻藻胆体的结构》(Structure of phycobilisome from the red alga Griffithsia pacifica)的研究论文,首次报道了世界上第一个完整藻胆体的近原子分辨率的冷冻电镜三维结构,为揭示藻胆体的
Cell:揭示DNA的三维包装调节细胞身份机制
图片来自Cell,doi:10.1016/j.cell.2017.09.018。2017年10月15日/生物谷BIOON/---细胞如何保持它的身份(比如成为肌肉细胞或神经细胞)的基本机制并没有完全得到理解。癌症等多种疾病与细胞在成熟过程中选择错误的发育通路相关联。在一项新的研究中,来自美国宾夕法尼亚大学佩雷尔曼医学院和西奈山伊坎医学院的研究人员提出干细胞分化为心肌细胞(以及其他的细胞类型)的能力
科学家成功解析细胞周期过程中基因组三维架构改变的分子机制
2017年10月11日 讯 /生物谷BIOON/ --近日,来自威斯塔研究所的研究人员通过研究揭开了基因组三维组织的新视野,尤其阐明了在细胞周期的不同阶段遗传物质是如何及时被紧密压缩和解压缩的,相关研究结果刊登于国际杂志Nature Structural & Molecular Biology上。图片来源:www.phys.org研究者Ken-ichi Noma教授表示,我们才刚刚意识到,