Cell Reports报道揭示非编码RNA和转座子在长寿中的作用机制
3月21日,中国科学院-马普学会计算生物学伙伴研究所研究员韩敬东在《细胞-报告》(Cell Reports)上在线发表了题为Impact of Dietary Interventions on Noncoding RNA Networks and mRNAs Encoding Chromatin-
Nature:工业革命引发的昆虫黑化突变原来是转座元件捣的鬼!
刊登于国际杂志Nature上的一项研究报告中,来自利物浦大学的研究人员通过研究发现,一种特殊的遗传突变或可产生黑色桦尺蠖,桦尺蠖是一种对遗传学和进化生物学有着重要的研究意义的昆虫,同时研究者还指出,这种黑色桦尺蠖在英国工业革命期间发生了快速扩散;这项研究解决了昆虫通过自然选择进行进化过程中的一个重要的缺失环节。
Nature genetics:转座子突变分析发现黑色素瘤驱动基因
近日,国际学术期刊nature genetics在线发表了美国科学家的一项最新研究进展,他们发现sleeping beauty(SB)转座子造成的突变能够促进BRAFv600e突变小鼠黑色素瘤的发生,同时还发现了1232个可能驱动黑色素瘤发生的候选癌基因。
遗传发育所等在表观遗传调控水稻转座子活性方面获进展
转座元件是指在基因组中能够移动或复制并重新整合到基因组新位点的DNA片段,它们对动植物基因组的组成、进化和基因表达具有重要影响。而在宿主基因组中,如果失去对转座元件的有效抑制,这些元件将对基因表达和基因组的稳定性构成影响。水稻是主要的粮食作物同时也是重要的单子叶模式植物,其中存在着大量的转座元件,迄今为止,对于水稻宿主基因组如何调节这些转座元件还知之甚少。
PNAS:表观遗传调控因子JMJ703在调控反转座子活性中的重要作用
转座元件是指在基因组中能够移动或复制并重新整合到基因组新位点的DNA片段,它们对动植物基因组的组成、进化和基因表达具有重要影响。而在宿主基因组中,如果失去对转座元件的有效抑制,这些元件将对基因表达和基因组的稳定性构成影响。水稻是主要的粮食作物同时也是重要的单子叶模式植物,其中存在着大量的转座元件,迄今为止,对于水稻宿主基因组如何调节这些转座元件还知之甚少。
PNAS:水稻中的H3K4特异性去甲基酶参与控制转座子活性
近日来自中国科学院遗传与发育生物学研究所的研究人员在组蛋白H3K4去甲基化酶研究中取得重要进展,证实水稻中的H3K4特异性去甲基酶JMJ703参与控制了转座子活性,相关研究论文于1月14日在线发表在《美国科学院院刊》(PNAS)杂志上。 领导这一研究的是中国科学院遗传发育所基因组生物学研究中心主任曹晓风(Xiaofeng Cao)。
PLoS One:揭示引发肌萎缩侧索硬化患者脑细胞的病变的非沉默转座子
2012年9月8日 讯 /生物谷BIOON/ --近日,来自冷泉港实验室(CSH)的研究人员通过研究发现,转座子在基因组上的跳跃或许具有潜在引发基因组损伤的可能性,这或许会引发包括肌萎缩侧索硬化症(ALS)、阿尔兹海默氏症等在内的严重的神经变性疾病。相关研究成果刊登在了9月6日的国际杂志PLoS One上。
Science:逆转录转座子在肿瘤发生中的重要作用
6月28日,Science杂志在线报道了关于体细胞逆转录转座子在人类肿瘤发生中作用的最新研究进展。 转座子(TEs)在人类基因组中含量丰富,有些能够通过RNA中间体产生新的插入序列。在癌症细胞中,通常抑制TE活动的机制如果遭到破坏,可能会促进诱导突变的逆转录转座子的产生。研究者对五个类型的癌症中 43个高覆盖率全基因组测序数据集的TE插入序列,进行了单个核苷酸分辨率的分析。