bioRxiv:人肺细胞和小鼠实验证实瑞德西韦高效抑制SARS-CoV-2的RNA聚合酶表达!
2020年5月10日讯 /生物谷BIOON /——SARS-CoV-2于2019年出现,成为导致新型大流行性病毒性疾病COVID-19的病原体。由于没有获得批准的治疗方法,本次大流行表明迫切需要针对SARS-CoV-2和未来出现的CoV的安全、广谱抗病毒对策。来自北卡罗来纳大学教堂山分校等单位的研究人员近日报告了瑞德西韦--腺苷类似物的一种单磷酸氨基甲酯前药可
Cell子刊详解SARS-CoV-2刺突蛋白中的多精氨酸切割位点是感染人类肺细胞的关键
2020年4月26日讯/生物谷BIOON/---人们认为新型冠状病毒SARS-CoV-2(以前称为2019-nCoV)是在2019年末从一种特征不明显的动物宿主传播到人类。随后,SARS-CoV-2传播的震中是中国湖北省武汉市,超过65000例病例发生在该地区。然而,目前已经在110多个国家发现了感染病例,美国、意大利和西班牙目前正在大规模爆发疫情。了解SA
作为全球主要死亡原因的COPD疾病竟是一种肺干细胞病
2020年4月18日讯/生物谷BIOON/---慢性阻塞性肺病(COPD)是全球主要的死亡原因。在一项新的研究中,来自美国多家研究机构的研究人员在COPD患者的肺部中发现了大量异常的干细胞。他们利用肺干细胞的单细胞克隆技术取得了他们的发现。如今,他们正在靶向这些异常的干细胞以便开发新的疗法。相关研究结果于2020年4月15日在线发表在Cell期刊上,论文标题
人支气管上皮细胞在香烟提取物刺激后蛋白质羰基化水平研究
Cell Biology and Toxicology杂志发表了意大利米兰大学Isabella Dalle-Donne教授团队题为 “Protein carbonylation in human bronchial epithelial cells exposed to cigarette smoke extract” 的文章(2019年1月16日)。吸烟是明确的外源性致病因子,其中含有毒的活性分
研究揭示聚苯乙烯微塑料对人类肺泡上皮细胞的毒性
微塑料作为一种新型污染物在大气中多以悬浮性细颗粒物的形式存在,可随着呼吸进入人体,与呼吸道黏膜和肺细胞产生接触,并影响其生理功能。微塑料因其粒径小,并具有一定组织亲和性,更易于吸附在细胞表面,破坏膜结构,尤其更容易被细胞以多种机制内吞并在胞内累积,从而造成细胞基因表达和调控的异常,引发炎症反应,甚至引起癌变。中国科学院沈阳应用生态研究所微生物资源与生态组、污染生态过程组在该
我国科学家揭示肺淋巴上皮瘤样癌发病机制
肺淋巴上皮瘤样癌(LELC)是一种罕见的原发性肺癌亚型,在组织学上类似于未分化的鼻咽癌(NPC)。1987年首次报道,肺LELC已被认为与Epstein-Barr病毒(EBV)感染密切相关。在2015年世界卫生组织(WHO)肺部肿瘤分类中,肺LELC从大细胞癌转移到其他和未分类的癌症。与其他类型的肺癌相比,肺LELC具有明显的临床病理学特征。它优先影响年龄较小的亚洲非吸烟者并且具有强化
中国科学家发现肺干细胞参与肺再生:跨界潜能,按需分化
肺脏是人体的呼吸器官,对气体交换和抵御病原体入侵至关重要。肺脏一旦受损,人体正常生命活动也将受到影响。肺脏自近端到远端包括气管、支气管、小支气管和肺泡等结构。肺泡是肺部进行气体交换的主要部位,也是肺的功能单位。通过呼吸作用进入肺部的氧气可以经过肺泡向周围的血管弥散,血管腔内含氧量低的静脉血就会转变为含氧量高的动脉血,随着血液循环输送到全身各处。同时,人体代谢产生的废气二氧化碳经由血液扩散到肺泡,通
中国科学家发现肺多能干细胞参与肺脏再生
肺脏是人体的呼吸器官,对气体交换和抵御病原体入侵至关重要。肺脏一旦受损,人体正常生命活动也将受到影响。中国科学院生物化学与细胞生物学研究所周斌、季红斌研究团队与广州生物医药与健康研究院彭广敦研究团队合作证实在人体中存在一种参与肺脏再生的肺多能干细胞,它可以“按需分化”,完成肺脏内部的“跨界维修”。相关成果于2月19日发表于国际学术期刊《自然?遗传学》。肺脏自近端到远端包括气管、支气管、
肠道上皮内T细胞调节代谢,加快心血管疾病产生
2019年2月8日/生物谷BIOON/---在一项新的研究中,来自美国麻省总医院(MGH)的研究人员鉴定出饮食代谢中的一个重要的检查点:小肠中的一组细胞。这组细胞延缓代谢,从而增加作为脂肪储存的食物摄入量,而不是迅速地转化为能量。他们发现缺乏这些细胞的小鼠能够摄入高脂肪和高糖的饮食,而不会出现肥胖、糖尿病、高血压和心脏病等疾病。相关研究结果发表在2019年2月7日的Nature期刊上,论文标题为“
Nature | 不管你怎么吃,都不会发胖,何顺等人揭示肠上皮T细胞新功能
必须精确调节对食物摄入的生化反应,因为摄入的糖和脂肪可以进入许多合成代谢和分解代谢途径,我们的身体如何处理营养物质取决于代谢传感器,它将膳食的内在营养价值与中间代谢联系起来。2019年1月31日,哈佛医学院何顺及Swirski共同通讯在Nature在线发表题为“Gut intraepithelial T cells calibrate metabolism and accelerate