打开APP

Cell:评估SARS-CoV-2刺突蛋白突变D614G对传播和致病的影响

2020年11月27日讯/生物谷BIOON/---新型冠状病毒SARS-CoV-2导致2019年冠状病毒病(COVID-19),如今正在全球肆虐。疫苗是控制大流行迫切需要的必要对策。目前还没有针对SARS-CoV-2的人类疫苗,但大约有120种候选疫苗正在研发中。2020年7月,来自美国杜克大学人类疫苗研究所、洛斯阿拉莫斯国家实验室、拉霍亚免疫学研究所、华盛

2020-11-19

Cancer Cell:大规模的癌症蛋白质组分析揭示癌细胞对药物疗法产生反应后的蛋白质特性改变

2020年11月11日 讯 /生物谷BIOON/ --近日,一篇发表在国际杂志Cancer Cell上的研究报告中,来自德克萨斯大学MD安德森癌症研究中心等机构的科学家们通过对癌细胞系在药物疗法中所产生的蛋白质改变进行大规模的特性分析,有望帮助预测癌细胞对药物的敏感性,以及理解癌细胞的耐药机制并识别出最佳的疗法策略组合。研究者表示,当进行了包括168种不同化

2020-11-11

PNAS:科学家有望利用水疱口炎病毒揭示SARS-CoV-2阻断宿主机体免疫反应的分子机制

2020年11月16日 讯 /生物谷BIOON/ --近日,一项刊登在国际杂志Proceedings of the National Academy of Sciences上的研究报告中,来自范德堡大学等机构的科学家们通过研究揭示了SARS-CoV-2靶向作用并影响其宿主因子蛋白的分子机制。研究者Yi Ren表示,我们研究了细胞中蛋白质表达的基本分子机制,同

2020-11-16

Cell:揭示受损的功能体液免疫反应与COVID-19死亡率密切相关

2020年11月7日讯/生物谷BIOON/---新型冠状病毒SARS-CoV-2导致2019年冠状病毒病(COVID-19),如今正在全球肆虐。疫苗是控制大流行迫切需要的必要对策。目前还没有针对SARS-CoV-2的人类疫苗,但大约有120种候选疫苗正在研发中。SARS-CoV-2与另外两种密切相关的高致病性病毒SARS-CoV和 MERS-CoV同属冠状病

2020-11-07

Nature:刺突蛋白突变D614G改变了新冠病毒的适应

2020年11月7日讯/生物谷BIOON/---新型冠状病毒SARS-CoV-2导致2019年冠状病毒病(COVID-19),如今正在全球肆虐。疫苗是控制大流行迫切需要的必要对策。目前还没有针对SARS-CoV-2的人类疫苗,但大约有120种候选疫苗正在研发中。SARS-CoV-2与另外两种密切相关的高致病性病毒SARS-CoV和 MERS-CoV同属冠状病

2020-11-07

一种自身免疫样的抗体反应或与重症COVID-19感染直接相关

2020年10月22日 讯 /生物谷BIOON/ --在COVID-19大流行的早期,很多免疫学家都认为,在感染早期机体产生大量抗体的病人或许就不会生病,然而实际情况或许并非如此;对COVID-19研究了几个月后,研究人员认为COVID-19感染的情况或许要比想象中更为复杂一些,最近一项研究发现,在某些患者中,预防其机体免疫系统反应失调或许与治疗病毒感染同样

2020-10-22

研究揭示首例催化Alder-ene反应的酶及其周环选择分子机制

 近期,中国科学院上海有机化学研究所生命有机化学国家重点实验室周佳海课题组与美国加州大学洛杉矶分校唐奕课题组、Kendall N. Houk课题组合作,首次表征自然界中催化Alder-ene反应的酶及其催化氧杂Diels-Alder(DA)反应的同源蛋白,解析这两类酶及其复合物的高分辨率晶体结构,并基于结构信息和计算指导通过定点突变实现周环选择性的

2020-10-15

Cell:构建出RGS蛋白调节G蛋白信号的全面图谱,有助解释为何人们对同一种药物作出不同反应

2020年10月10日讯/生物谷BIOON/---在一项新的研究中,来自美国斯克里普斯研究所的研究人员全面绘制了细胞内的一类关键蛋白如何调节从细胞表面受体传入的信号。此外,他们揭示了人们通常在这类蛋白中存在的变异导致他们的细胞在相同的细胞受体受到刺激时做出不同的反应,这为为什么人们对相同的药物作出的反应存在有很大的不同提供了一个合理的解释。相关研究结果于202

2020-10-10

诺华强效选择因子B抑制剂iptacopan显著降低蛋白尿水平!

B因子是补体系统替代途径的关键丝氨酸蛋白酶。

2020-10-26

揭示eIF2α通过刺激抑制神经元中的蛋白合成来增强长期记忆

2020年10月13日讯/生物谷BIOON/---在一项新的研究中,来自加拿大麦吉尔大学、蒙特利尔大学和以色列海法大学等研究机构的研究人员发现在记忆巩固过程中,至少有两个不同的过程发生在两个不同的大脑网络---兴奋性网络和抑制性网络---中。兴奋性神经元参与创建记忆痕迹(memory trace),而抑制性神经元则会屏蔽背景噪音,从而使得长期学习得以进行。相

2020-10-13