打开APP

Science:揭示中性粒细胞自我限制自身群集反应,从而抑制细菌生长

2021年6月23日讯/生物谷BIOON/---中性粒细胞属于我们免疫系统的首批反应者。它们在我们体内循环,在受感染的组织中寻找、杀死和消化有害病原体。为了在发炎组织这一非常复杂的情况下成为如此有效的杀手,它们作为一个集体一起工作。它们释放化学信号,吸引其他细胞形成细胞群体,并作为一个群体进行攻击。在一项新的研究中,来自德国马克斯-普朗克免疫生物学与表观遗传

2021-06-23

PNAS:解析细菌Ⅵ型分泌系统调控新机制

近日,上海交通大学生命科学技术学院、微生物代谢国家重点实验室董涛团队揭示了细菌如何通过感应T6SS内管蛋白在胞内的积累量,实现对T6SS表达和活性的精准调控。相关研究成果以“Sensing of intracellular Hcp Levels controls T6SS expression in Vibrio cholerae”为题发表于PNAS杂志。上

2021-06-19

International Journal of Biological Macromolecules:研究揭示二键对该木聚糖酶结构及功能的影响的分子机制

  木聚糖酶是降解富含半纤维素成分的关键酶,研究其降解过程以及水解特性对于地球可再生资源的高效利用具有重要的科学价值和现实意义。木聚糖酶蛋白结构因受二硫键的影响,酶蛋白的刚性得以增强,酶降解底物的过程以及所形成产物的组成均会发生变化,酶的水解特性也产生相应变化。论文通过同源建模、DS分子模拟以及重叠延伸PCR等方法,研究了不同位置二硫键及

2021-06-22

Science报道全新思路:攻破细菌防御系统,CSE抑制剂显露威力

抗生素耐药性仍是目前最大的公共卫生挑战之一。预计到2050年,对多种抗生素具有抗药性的病原体日益流行,以及到达临床阶段的新抗菌药物数量不断减少,将导致每年1000万人死于耐药病原体。虽然医生正在改变使用抗生素的方式以降低出现耐药性的风险,但仍然需要新药来对付难以治疗的细菌。然而,寻找对抗耐药病原菌的新疗法一直是困难的。纽约大学医学院的科学家们正在探索不同的策

2021-06-21

抑制细菌硫化氢产生可阻止抗生素耐受性和抗药性产生

2021年6月20日讯/生物谷BIOON/---抗生素耐受性(antibiotic tolerance)是细菌在正常致死水平的抗生素下存活的先天能力。在一项新的研究中,来自美国和俄罗斯的研究人员发现信号分子硫化氢(H2S)在抗生素耐受性中起着关键作用。相关研究结果发表在2021年6月11日的Science期刊上,论文标题为“Inhibitors of bac

2021-06-20

Science Advances:细菌集群运动的涌现动力学研究取得进展

生物体在高密度下会发生集群运动,与单个生物体的运动状态有较大不同。这种运动在局域发生对称性破缺,在比个体大几个数量级的尺度上具有长程关联,并对所在体系的物理性质产生改变。例如,高浓度的细胞微管产生液晶取向序并伴随拓扑缺陷的产生与湮灭;而细菌会产生极向序,在低雷诺数的流体中产生湍流(图1),并让流体的等效粘滞系数降为零,即产生“超流”。因此,生物系统中集体运动

2021-06-11

新研究发现:口腔细菌或能激活致癌基因

  细菌与癌症的关系一直都十分微妙,1990年科学家首次发现了幽门螺旋杆菌在胃癌中的致病性,证明了细菌可能具有阻止癌细胞“自杀”的能力。去年5月,一篇关于恶性肿瘤内部细菌的研究登上了世界顶级学术期刊《Science》杂志的封面,更是加深了学术界对细菌可能是癌症的“帮凶”这一说法的怀疑。人体作为一座生理之岛,寄存着数以万亿计的细菌和其他微生

2021-06-04

Science:重写细菌基因组遗传密码的新方法可一次在蛋白中添加多种非天然的氨基酸

2021年6月18日讯/生物谷BIOON/---几乎所有的有机体都是通过20种不同的氨基酸组合在一起来构建它们的蛋白质。为了在这种组合过程中添加新的氨基酸,科学家们重新设计了基因和其他的蛋白质构建工具,从而产生了具有独特化学特性的对制造药物很有帮助的蛋白质。但是,这类研究工作很费时费力,而且通常一次只能添加一种新的氨基酸。如今,研究人员打开了做更多事情的闸门

2021-06-18

Redox Biology:谷胱甘肽的新作用细菌毒性和发病机制的调节剂

近日,新加坡国立大学研究者在Redox Biology杂志上发表了题为"New roles for glutathione: Modulators of bacterial virulence and pathogenesis"的文章。低分子量硫醇含有巯基,巯基对维持细胞的抗氧化防御很重要。除了低分子量硫醇在细菌中作为氧化还原调节因子的传统作用外,谷胱甘肽(

2021-06-08

Cell:我国科学家揭示细菌鞭毛马达结构和工作机制

  1秒钟跑出自己身长60倍、甚至100倍的距离是很多细菌具有的运动能力。细菌的运动能力依赖于其特异的运动器官—鞭毛。鞭毛是一个巨大的纳米机器,由细胞膜上的马达、胞外接头装置和鞭毛丝组成,是自然界中最高效、最精密的分子引擎,也是最复杂的蛋白质机器之一,能够每秒钟旋转300-2400圈。由于其高度复杂性,鞭毛马达的工作原理尚未得到揭示。在国

2021-06-02