Soil Biology and Biochemistry:揭示稻田温室气体排放的碳-铁耦合机制
稻田土壤有机碳密度一般显着高于旱地土壤,因此其有机碳矿化的加剧将向大气释放大量温室气体CO2,进而影响全球气候变化。水稻根部表面通常沉积一层无定型铁氧化物(简称为铁膜,Fe plaque)。铁膜处于稻田好氧/厌氧交替界面,并且铁膜中的铁主要以微生物能利用的活跃非晶质氧化铁的形式存在,因此,铁膜上铁的氧化还原过程可能与稻田有机碳的矿化过程相耦合。目前,尚不清楚
研究人员揭示氮营养与植物减数分裂起始的联系
减数分裂是有性生殖生物配子产生和世代交替的核心事件。减数分裂起始是细胞有丝分裂向减数分裂的转变,标志着生物体从营养生长向生殖生长的转变。氮素是植物必需的大量元素,是植物生长发育和农作物产量形成的重要限制因子。氮缺陷往往导致植物育性降低,而对其分子机制却知之甚少。中国科学院遗传与发育生物学研究所程祝宽研究组利用图位克隆技术,在水稻中鉴定到一个新的减
Nature:揭示自由基SAM酶TokK的三维结构,有助于构建更有效的碳青霉烯类抗生素
一类叫做碳青霉烯类抗生素(carbapenems)的强效抗生素可以绕过抗生素耐药性,这要归功于其结构中特定的原子链。如今,在一项新的研究中,来自美国宾夕法尼亚州立大学和约翰霍普金斯大学的研究人员对参与构建这种原子链的一种酶进行了成像,以便更好地了解它是如何形成的---也许可以重现这个过程来改进未来的抗生素。
解脂耶氏酵母一碳代谢研究取得进展
利用甲基营养型工业微生物,可从一碳原料生产多种产品。天然甲基营养型微生物能够同化甲醇积累菌体,并有效合成乙酸等少数产物,而由于缺少遗传改造工具、细胞代谢网络不清晰,人们难以拓展其有限的产物谱,限制了此类微生物的广泛应用。近年来,改造工业微生物以同化甲醇,进行甲醇高效生物转化,成为研究重点。解脂耶氏酵母是一种重要的非常规酵母底盘,经遗传改造,能够转化多种碳源底
Journal of Neural Engineering:澳大利亚科学家开发出可用于脑机接口的新型碳基生物传感器
生物传感器是脑控机器人和脑机接口领域的重要器件,通常贴在面部或头部皮肤上以检测源自大脑的电信号。近日,来自澳大利亚悉尼科技大学的科学家团队开发出一种新型碳基生物传感器,可能将推动脑控机器人和脑机接口技术的革新,相关内容以题为“Non-invasive on-skin sensors for brain machine in
ACS Synthetic Biology:改造解脂耶氏酵母一碳代谢研究中获进展
利用甲基营养型工业微生物,可从一碳原料生产多种产品。天然甲基营养型微生物能够同化甲醇积累菌体,并有效合成乙酸等少数产物,而由于缺少遗传改造工具、细胞代谢网络不清晰,人们难以拓展其有限的产物谱,限制了此类微生物的广泛应用。近年来,改造工业微生物以同化甲醇,进行甲醇高效生物转化,成为研究重点。解脂耶氏酵母是一种重要的非常规酵母底盘,经遗传改造,能够转化多种碳源底
Nature Plants:阐明干旱信号调控碳转运和根系生长的分子机制
干旱造成作物生产的损失,危害粮食安全。植物因其固着生长的特性而难以躲避所受到的胁迫,被迫进化出适应逆境的机制。植物通过关闭气孔、减缓生长、衰老和休眠等“节流策略”,减少干旱下水分和养分的消耗;植物还利用强大的根系、向水性以及C4和CAM光合途径等“开源策略”,从土壤中获取水分和养分,维持干旱下的生长。解析开源策略调控机制,是作物抗逆节
Imbruvica+Venclexta固定疗程一线治疗:优于苯丁酸氮芥+obinutuzumab方案!
与苯丁酸氮芥+obinutuzumab(I+O)方案相比,I+V方案表现出更优的无进展生存(PFS)益处和更深程度的MRD阴性缓解。
氮添加和降雨量增加对树木生长影响研究获进展
大气氮沉降和降雨量增加影响陆地生态系统的固碳作用,然而这两个同时存在的全球变化因子如何影响树木的重要碳汇过程-树木木质部生长(独立或相互作用)尚不清楚。中国科学院华南植物园生态与环境科学研究中心博士后余碧云在研究员黄建国的指导下,在河南鸡公山林冠模拟氮沉降和增雨实验平台开展实验,采用微树芯采样技术于2014-2015年生长季每周监测林
氮循环功能基因的生物地理学分布格局研究中取得进展
微生物(细菌和古细等)是全球生物地球化学循环的重要驱动者。阐明微生物生物地理分布及其驱动过程对于预测环境变化将如何影响生物地球化学循环非常重要。以往微生物生物地理学的研究常常聚焦在物种的层面。然而,越来越多的研究表明,由于微生物群落固有的功能冗余性,微生物群落的功能变化通常与其物种组成变化是解耦的,并且相比物种结构,功能结构与环境变化和生态系统功能的关系更加