打开APP

The Plant Cell:揭示植物细胞壁果胶多糖合成新机制

 果胶质多糖是植物细胞壁的重要组分,不仅在植物生长发育、信号传导和防御反应等生理过程中发挥着重要作用,还与植物的生物量和纤维生物质的酶解转化效率密切相关。由于果胶的组成与结构极为复杂,且长期以来缺乏理想的研究体系,果胶代谢调控方面的研究进展较为缓慢。此前虽已鉴定出多个参与果胶合成的关键基因,但有关果胶合成的转录调控机制仍不清楚。MUM4与GATL5

2022-02-18

Science:科学家发现植物抵抗农业重大害虫小叶蝉的化学创新与奥秘

  中国科学院分子植物科学卓越创新中心李大鹏研究团队与德国马克斯普朗克化学生态所合作首次揭示了植物如何巧妙组装其特异性代谢产物应对农业重大害虫小叶蝉的非寄主抗性机制。该成果在国际知名学术期刊《科学》以封面论文的形式在线发表题为“Natural history–guided omics reveals plant defensive che

2022-02-07

低磷胁迫环境中植物养分捕获策略作用机理研究获进展

土壤有效磷的不足是限制陆地生态系统碳汇能力的重要因素。不同成因的低磷胁迫在自然生态系统中广泛存在,植物可通过根系释放羧化物、磷酸酶和形成菌根共生体等多种养分捕获策略(nutrient-acquisition strategies, NASs)来应对低磷胁迫。针对不同低磷胁迫环境中各种NASs作用机理及生态效应不清的科学难题,中国科学院成都山地灾害与环境研究所

2022-02-01

研究人员揭示氮营养与植物减数分裂起始的联系

 减数分裂是有性生殖生物配子产生和世代交替的核心事件。减数分裂起始是细胞有丝分裂向减数分裂的转变,标志着生物体从营养生长向生殖生长的转变。氮素是植物必需的大量元素,是植物生长发育和农作物产量形成的重要限制因子。氮缺陷往往导致植物育性降低,而对其分子机制却知之甚少。中国科学院遗传与发育生物学研究所程祝宽研究组利用图位克隆技术,在水稻中鉴定到一个新的减

2022-01-27

Science Advances:揭示组织定居记忆性T细胞可介导器官移植物排斥

临床器官移植是器官损伤终末期患者的有效治疗手段。受者免疫系统对心脏、肾脏等器官移植物的免疫排斥仍是临床面临的科学问题和限制移植物长期存活的障碍。当前研究对长期定居在非淋巴组织或其它器官中的识别同种异体抗原的记忆性T细胞(TRM)是否参与同种异基因移植物的排斥及其移植免疫排斥的特点等问题尚不清楚。近期,中国科学院动物研究所/干细胞与再生医学创新研究院膜生物学国

2022-02-01

New Phytologist:科研人员利用根系解剖结构揭示草原植物根系功能

  通过根系性状理解根系功能及其对植物生长、生态系统过程和功能的影响是根系生态学研究的热点和难点问题。根的解剖结构是理解根系功能以及根系结构与功能关联的关键基础。然而,目前关于单子叶和双子叶草本植物的根系解剖结构及其揭示的根系功能的研究较匮乏。中国科学院植物研究所研究员白文明研究组以内蒙古典型草原常见的32种植物为研究对象,从根系解剖结构

2022-01-28

Plant Diversity:石松类和蕨类植物的基因组大小与进化研究中取得进展

基因组的大小与物种进化之间的关系一直以来都受到学者广泛关注。作为遗传信息的载体,基因组大小不可避免地逐步增加。已有研究显示,基因组的大小同物种的进化程度之间存在一定的正相关关系。从大尺度的分类水平来看,基因组大小和物种复杂程度在总的趋势上呈正相关性。然而随着研究的深入,人们发现基因组的大小和物种的进化复杂度之间没有严格的对应关系,这就是所谓的“C值悖论”,这

2022-02-02

Plant Biotechnology Journal:解析豆科植物根瘤固氮的调控网络

  华中农业大学生命科学技术学院/农业微生物学国家重点实验室微生物光合作用与生物固氮团队端木德强教授课题组在国际学术期刊Plant Biotechnology Journal在线发表了题为“Single cell-type transcriptome profiling reveals genes that promote nitroge

2022-01-24

Science:揭示AtRRP44a蛋白护送mRNA通过植物胞间连丝

2022年1月15日讯/生物谷BIOON/---发育中的植物嫩枝如何知道如何、在哪里以及何时生长?分裂细胞(dividing cell)需要相互传递信息以协调生长。在植物中,重要的信息被包装到信使RNA(mRNA)中,在细胞之间传递。在一项新的研究中,通过研究芥菜类植物拟南芥,美国冷泉港实验室(CSHL)的David Jackson教授和他的团队发现,mRN

2022-01-15

Science Advances:解析植物顶端弯钩的形成机制

埋在土壤中的种子萌发后,幼苗需要对抗来自土壤的机械压力,破土而出进行光合生长。一方面,幼苗的下胚轴通过快速地向上生长,获得破土而出的动力;另一方面,下胚轴的顶端会形成“顶端弯钩”结构,将脆弱的子叶和顶端分生组织弯向下生长。该结构既能保证幼苗拥有相对坚硬的“钻头”冲破土壤,又能避免子叶和顶端分生组织在出土过程中与土壤直接冲撞而造成机械损伤。对于大多数双子叶植物

2022-01-15