打开APP

入侵植物调节次生代谢物响应环境变化的研究获进展

为了应对不断变化的环境,植物演化出各种策略,如适应性策略(通过改变基因型),生态策略(通过表型可塑性)和资源分配策略(通过改变防御与生长/繁殖资源的分配)。这些策略使植物能够适应不同地理范围内的生物和非生物胁迫。为了应对原产地和入侵地之间以及纬度梯度上变化的生物和非生物胁迫,入侵植物可能会通过调节分配不同的次生代谢产物以促进其入侵成功。目前,入侵植物对草食动

2020-08-07

新型光场显微镜高速记录大脑神经元活动和血流的快速动态变化研究

   8月10日23点,Nature Biotechnology在线发表了由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室研究员王凯研究组完成的题为《共聚焦光场显微镜对小鼠和斑马鱼大脑快速体成像》的研究论文。该研究发展了一种新型体成像技术:共聚焦光场显微镜(Confoc

2020-08-11

首次在突触水平观察大脑一生的变化

 近日,国际著名期刊Science杂志刊登了一篇题为“A brain-wide atlas of synapses across the mouse”的论文。来自英国爱丁堡大学的研究人员利用转基因小鼠通过组织切片荧光显像和基因测序技术在单突触层面全景展现了小鼠一生中整个大脑突触结构和功能的变化。突触是构成神经环路活动的基本单元,是神经元之间进行功能

2020-07-20

或能解释衰老为何导致智力变化

顶尖学术期刊《科学》以封面论文的形式,介绍了一项重要的工作。由来自英国、法国、以及瑞典的科学家们以单突触的分辨率,分析了小鼠大脑的50亿个“兴奋性突触”的分子与形态特征!这项工程浩大的研究拓展了我们对突触的认知,其结果也有望让我们更好地理解在生命的不同阶段,智力、记忆、行为等会出现怎样的变化。图片来源:Zhen Qiu, Mélissa Cizeron, a

2020-07-20

Cell子刊:利用开创性的iPALM技术揭示HIV病毒的Gag蛋白晶格发生动态变化

2020年7月26日讯/生物谷BIOON/---病毒是可怕的。它们像隐形的军队一样侵入我们的细胞,而且每一种病毒都有自己的攻击策略。当病毒摧毁人类和动物群体时,科学家们争相反击。许多人利用电子显微镜,这种工具可以“看到”病毒中的单个分子在做什么。然而,即使是最复杂的技术,也需要将样本冷冻和固定,以获得最高的分辨率。如今,在一项新的研究中,来自美国犹他大学的研

2020-07-26

专家预测2100年世界将遭受人口重大变化

鉴于不断变化的人口规模和年龄结构可能会对大多数国家的经济,社会和地缘政治产生深远影响,以及目前缺乏有效的预测人口相关数据的统一方法的现状,在最近发表于《The Lancet》杂志上的一项研究中,来自美国华盛顿大学健康指标评估研究所的Christopher J L Murray博士等人开发了一套预测死亡率,生育力,迁移和人口的新方法。此外,作者还还评估了未来人

2020-07-25

拟南芥自然变异响应氮浓度变化协调开花时间研究取得进展

  开花是高等植物由营养生长向生殖生长转变的关键发育阶段。选择在适宜时间完成开花转型,为植物繁衍后代、延续物种所必需,也是植物在长期演化过程中适应环境变化的结果。开花时间受外界环境包括营养因素和自身遗传因素的综合调控,并伴有复杂基因调控网络。氮为植物生长发育所需大量营养元素,氮营养水平可影响开花时间。但植物如何协调开花时间等自身发育过程,

2020-07-16

植物调节多种次生代谢物响应海拔梯度变化的研究取得进展

  沿海拔梯度的环境变化已越来越多地用于评估各种生物和非生物因素对植物生理和生态策略的影响。植物可以通过产生次生代谢物来适应环境压力的变化,由于生物和非生物因素之间的相互作用可能会影响植物的防御策略,植物在海拔梯度上产生的代谢反应也可能是复杂的,植物如何分配不同的次生代谢物来应对海拔梯度上复杂多变的生物和非生物环境尚不清楚。因此,了解植物

2020-07-14

同日两篇《自然》:衰老时细胞会发生什么变化?首个小鼠“衰老细胞图谱”诞生

 衰老时,身体内各个器官的细胞会发生怎样的变化?除了白发与皱纹,我们有没有什么更精准的方法,来发现衰老的蛛丝马迹?今天,顶尖学术期刊《自然》上连发两篇论文,为我们带来了洞见。这两篇论文以小鼠为模型,以高达“单细胞”的分辨率,建立了其衰老的转录组图谱,并找到了在不同的器官中,衰老在分子层面上带来的特殊变化。在第一篇论文中,科学家们在小鼠的23种不同的

2020-07-16

50亿个脑细胞连接点,揭示大脑终生变化

 近日,来自英国爱丁堡大学(University of Edinburgh)的一支科研团队在顶尖学术期刊《科学》上展示了一组惊人的大脑图像。这些图像描绘了小鼠在一生的不同年龄段,整个大脑中50亿个神经细胞连接点的细节。科学家们相信,这份图谱将为我们提供大脑老化的线索,揭示记忆如何受到年龄的影响,并为理解学习障碍和痴呆症等提供洞见。这些大脑图像中的“

2020-06-18