研究解析结核杆菌转录起始复合物的晶体结构
基因组的遗传信息得以表达,首先需要RNA polymerase (RNAP)以DNA为模板合成RNA。基因转录不仅是基因表达第一步,还是基因表达的主要调控步骤。对RNAP分子机器结构、运行机理以及调控机制的研究能够回答基因表达调控的基础生物学问题。在转录起始阶段,细菌的RNAP与转录起始σ因子形成复合物,依次执行启动子双链DNA的识别、解链以及RNA起始合成等关键步骤。细菌RNAP通过
Nature Microbiology:揭示绿脓杆菌群集感应分子诱导宿主免疫细胞凋亡新机制
绿脓杆菌(Pesudomonas aeruginosa)是一类临床中常见的条件性致病菌,主要引发烧伤病人伤口处以及肺纤维化病人肺脏组织的感染。随着抗生素耐受性的增强,近年来绿脓杆菌在全世界范围内的致病率与致死率出现了不断上升的趋势。“群集感应”指的是细菌中特有的,因受到个体数量影响而“开启”或“关闭”的转录调控机制。在绿脓杆菌中,存在一类叫做“N-oxo-dodecanoyl-L-Homoseri
艾尔建保妥适(Botox,肉毒杆菌毒素A)新适应症获美国FDA受理
年03月09日/生物谷BIOON/--艾尔建(Allergan)近日宣布,美国食品和药物管理局(FDA)已受理该公司提交的一份补充生物制品许可(sBLA),扩大Botox(保妥适,通用名:onabotulinumtoxinA,肉毒杆菌毒素A)标签,用于治疗儿科患者(2岁及以上)上肢和下肢痉挛。小儿上肢痉挛适应症已被授予6个月优先审查,处方药用户收费法目标日期(PDUFA)预计在2019年第二季度。
Mucosal Immunol: 科学家们开发出治疗结核杆菌感染的疫苗
2019年3月5日 讯 /生物谷BIOON/ --多年来,科学家一直在努力想出一种更好的方法来保护人们免受结核病这种由结核分枝杆菌(Mtb)细菌感染引起的疾病。德克萨斯生物医学研究所教授Jordi Torrelles博士表示,最近在老鼠身上进行的实验显示出了巨大的希望。该研究发表在《Mucosal Immunology》杂志上。“我们发现,我们的疫苗配方比目前的疫苗保护得更好,并且不会导致任何肺组
Mol Cell:新研究揭示结核杆菌“自杀”机制
2019年2月20日 讯 /生物谷BIOON/ --根据最近的一项研究,结核杆菌会被它们产生的毒素杀死,除非该毒素被解毒蛋白中和。相关研究结果发表于最近的《Molecular Cell》杂志上。目前该团队现在正在寻求将这种“自杀”机制用于治疗目的。细菌合成对自身有毒的分子。当暴露于恶劣环境时,这些毒素会减缓细菌种群的生长,直至形成更有利的条件。有些毒素甚至会杀死产生这些毒素的细菌。这种“自杀”的生
酪酸梭菌联合标准疗法显著提高幽门螺杆菌根除率
幽门螺杆菌,英文名Helicobacter pylori,缩写Hp,定植于人类胃黏膜,人是它的唯一宿主和传染源。最早,学术界认为,人的胃部是强酸环境,因此是洁净而不可能有细菌生存的。然而,在1982年,澳大利亚学者沃伦和马歇尔首先从人胃黏膜中分离出了幽门螺杆菌。幽门螺杆菌(来源:baike.com) &n
凝结芽孢杆菌抑制抗万古霉素的肠球菌
抗万古霉素的肠球菌,英文名vancomycin-resistant enterococci,缩写VRE,是院内传播的一种致病菌,常见的多重耐药菌之一,最早于1988年被报道。VRE能够定植于患者肠道,并通过患者作为主要传播源传播[1]。感染VRE往往会导致泌尿系统感染、血流感染、腹腔感染、外科伤口感染、心内膜炎和中枢神经系统感染,其病死率可以达到21.0%—27.5%[2] 。随着抗生素
新型幽门螺杆菌根除疗法Talicia III期临床成功
RedHill是一家专注于治疗胃肠道疾病的专科药生物制药公司。近日,该公司公布了Talicia(RHB-105)治疗幽门螺杆菌感染的关键性III期临床(ERADICATE Hp2)的积极顶线数据。Talicia是一种新型的固定剂量全合一口服胶囊,结合了2种抗生素利福布汀(rifabutin,12.5mg)及阿莫西林(amoxicillin,250mg)和一种质子泵抑制剂(PPI)奥美拉
Mayoly Spindler:新研究显示检查+治疗策略在控制幽门螺杆菌感染症状和后果方面具有成本效益
幽门螺杆菌感染是影响全球60%人口的重要公共卫生问题,90%的胃溃疡由幽门螺杆菌感染引起,80%的胃癌与幽门螺杆菌感染有关。根据西班牙研究结果所推荐的“检查+治疗策略”(包括使用尿素呼气试验)与单独进行内镜检查一样有效,并且在治疗消化不良患者方面,比对症治疗策略更便宜,成本效益也更高。Mayoly Spindler很荣幸能为这个项目提供支持。在由Javier Gisbert教授和Adrian Mc
丹麦科学家通过调控转录因子GntR1和RamA提高谷氨酸棒杆菌的生长和中心碳代谢
适应性进化技术是目前备受瞩目的菌种改良技术,该技术能够有效的增强菌株的某种表型或者生理性状,并且该育种技术会保留菌株原有的优良性状,不会出现基因工程育种技术造成的生长限制。为了探究控制谷氨酸棒杆菌的生长和碳水化合物代谢的关键调控因子,研究人员在葡萄糖的基础培养基中对野生型的谷氨酸棒杆菌(C. glutamicum ATCC 13032)进行了长达1500代的适应性进化。在驯化菌株中分离