打开APP

Nature:成功地在体外重建出负责纤毛内运输的蛋白复合

2018年7月8日/生物谷BIOON/---每个活的有机体都产生细小的被称作纤毛的细胞突起。鞭毛虫需要它们移动,蛔虫需要它们寻找食物,精子需要它们移向卵子。纤毛在肺部中形成保护性的细绒毛,并在胚胎内的器官分化中起着至关重要的作用。如今,在一项新的研究中,来自德国慕尼黑技术大学(TUM)的研究人员重建出负责纤毛内运输的蛋白复合物---鞭毛内运输复合物(intraflagellar-transport

2018-07-08

科学家发现一种特殊的蛋白复合体或能塑造T细胞的命运

2018年7月10日 讯 /生物谷BIOON/ --近日,来自圣裘德儿童研究医院的科学家们通过研究发现,一种特殊的蛋白质复合物就好像帮助医学生选择专业导师一样,其也能帮助塑造发育中T细胞的命运,相关研究刊登于国际杂志Science Immunology上,文章中,研究人员阐明了细胞代谢在机体免疫系统功能上所扮演的关键角色。图片来源:St. Jude Children's Research Hosp

2018-07-10

多篇Nature论文解析出结合到DNA上的起点复制复合物的高清晰结构

2018年7月8日/生物谷BIOON/---细胞通过基因组复制产生自身的拷贝而进行增殖。按理说,DNA复制是所有生命形式中最基本和最保守的机制。破解这一过程是如何最精确地实现的秘密是理解生命秘密的关键。当沃森和克里克在半个多世纪前基于DNA双螺旋结构首次提出DNA的复制方式时,许多人认为将两条DNA链分开进行复制的分子机器(即DNA复制机器,或者说DNA复制复合物)的结构即将出现。然而,鉴于这种分

2018-07-08

mTORC1蛋白复合物也能控制着细胞内部的拥挤度

2018年6月24日/生物谷BIOON/---在历史上研究得最多的蛋白机器中,人们很早就已知道mTORC1能够感知细胞是否具有足够的能量来产生它作为生长的一部分而进行繁殖所需的蛋白。鉴于mTORC1的错误版本导致癌症中观察到的异常生长,自1970年以来,针对这种复合物的药物已成为1300项临床试验的主题。如今,在一项新的研究中,来自德国马克斯-普朗克生化研究所和美国纽约大学医学院的研究人员发现mT

2018-06-24

高强韧多孔钛合金人工骨材料研发取得突破

  近日,由中国科学院金属研究所等单位承担的863计划课题“高强韧多孔钛人工骨材料研发(2015AA033702)”通过技术验收。该课题开发的高强韧多孔钛合金人工骨材料,为未来解决大面积骨缺损修复的临床治疗难题提供了一种新途径。骨缺损是骨科和颌面外科常见疾病,由创伤、感染、肿瘤切除等所致,而大面积骨缺损的修复是目前临床治疗的一个棘手难题。该课题突破了新型高强韧多孔钛合金的结构设

2018-06-14

新型材料可助力胰岛移植 攻克1型糖尿病有望

  在1型糖尿病治疗领域,科学家们长期以来一直希望将功能胰岛细胞移植到患者体内,以实现治愈。但免疫系统排斥的危险成为横亘在他们面前的障碍。近日,一支来自佐治亚理工学院(Georgia Tech)、路易斯维尔大学(the University of Louisville)和密西根大学(the University of Michigan)的研究团队将胰岛和一种水凝胶移植到了糖尿病

2018-06-13

新型轻质高强骨科植入材料技术研发取得重要进展

近日,由北京纳通科技集团有限公司承担实施的863计划课题“新型轻质高强骨科植入材料研发(2015AA033701)”通过技术验收。该课题成功解决了现有骨折内固定、运动医学损伤及骨缺损修复中的临床问题,实现了高端医用材料制品的应用转化,成功开发出可降解聚乳酸及其复合材料和镁合金材料两种骨科材料,已实现两种制品完成注册型检,进入临床研究阶段。有望大大推进我国高端医用植入材料产业的发展和高端医疗器械的民

2018-06-09

研究人员利用SERS技术解析生物分子在金属纳米材料表面的吸附作用

  表面增强拉曼光谱(SERS)技术在物质分析上具有指纹识别、高灵敏度、无损、水干扰小等优点,已在化学、生物、医学、食品、环境等领域得到广泛应用。但目前关于SERS光谱的重复性和定量化及其化学增强效应和机理问题,仍是研究热点和难点,因为这与分子在金属纳米材料上的吸附方式和作用密切相关。反向思考,是否可通过对SERS光谱测量与分析研究分子在金属纳米材料上的吸附方式和作用?中国科学

2018-06-08

Nat Commun:科学家开发出可再生口腔牙釉质的新型材料

2018年6月6日 讯 /生物谷BIOON/ --日前,一项刊登在国际杂志Nature Communications上的研究报告中,来自伦敦大学玛丽女王学院的科学家们通过研究开发了一种生长矿化材料的新方法,这些材料或能再生诸如牙釉质和骨骼等硬组织。图片来源:Alvaro Mata 釉质(enamel)位于牙齿外部,其是机体中最坚硬的组织,其能让我们的牙齿在一生过程中都发挥多种作用,比如咬东西、接触

2018-06-06

研究人员首次使用生物材料实现功能性脑组织再生

2018年5月25日讯 /生物谷BIOON /——由于大脑再生修复受损脑组织的能力有限,中风成为了致残的主要原因之一。中风之后,中风部位会缺乏正常的脑组织,主要是由于炎症和免疫反应增加、血管生成及神经生长严重受限。目前治疗性促血管生成的材料已经被用于修复成年人中风缺血部位,主要功能是形成血管网络。但是这些促血管生成的材料是否可以促进神经修复仍然还不清楚。图片来源:UCLA Health为了直接帮助

2018-05-25