Sci Adv:新研究成功地从小鼠胚胎中培育成熟人类细胞
几十年来,人类干细胞的疾病治愈潜力因无法在活生物体中体内产生足够数量的成熟人类细胞而受到阻碍。现在,由布法罗大学的科学家领导的一个研究小组已经开发出一种可以显著提高小鼠胚胎中成熟人类细胞产量的方法。该研究于5月13日发表在《Science Advance》杂志上。
研究利用液滴微流控系统实现高通量类器官可控负载与培育
近日,中国科学院大连化学物理研究所微流控芯片研究组研究员秦建华团队在实现功能类器官可控负载与培育研究方面取得新进展,建立了一种基于双水相液滴微流控系统的杂合水凝胶微囊可控制备新体系,可高通量产生干细胞来源胰岛类器官,并利于降低其变异性。类器官(organoids)是近年来新兴的体外3D器官模型,被认为是生命科学领域的重大技术突破。类器官指的是一种在体外培育,
Cell:首次利用蛇干细胞培育出分泌毒液的蛇毒腺类器官
2020年1月29日讯/生物谷BIOON/---在一项新的研究中,来自荷兰胡布勒支研究所等研究机构的研究人员利用蛇干细胞培养出可分泌功能性毒素的蛇毒腺的微型化组织。相关研究结果发表在2020年1月23日的Cell期刊上,论文标题为“Snake stem cells used to create venom-producing organoids”。科学家们此
澳美科学家培育出抗登革热病毒的转基因蚊子
澳大利亚联邦科学与工业研究组织17日发布公报说,该机构科学家与美国加利福尼亚大学圣迭戈分校同行合作,第一次用转基因方法培育出一种能抵抗全部4种血清型登革热病毒感染的埃及伊蚊,有望对有效抑制这种病毒传播发挥重要作用。联邦科学与工业研究组织科学家普拉萨德·普拉德卡博士介绍说,研究团队利用基因工程技术的最新成果,成功对埃及伊蚊进行了基因改造,使其感染和
武汉这所高校培育的蔬菜获国家科技奖
10日上午,2019年度国家科学技术奖励大会在京举行,湖北省共有28项成果(通用项目)获奖。获奖项目多数由在汉高校、科研院所和企业牵头或参与完成,这也再一次显示了武汉的科教实力。在这28项获奖成果中,由湖北省主持完成的成果有14项,其中包括国家自然科学奖二等奖1项,国家技术发明奖二等奖4项,国家科学进步奖一等奖2项、二等奖7项。湖北省参与完成的获
科学家们在培养皿中成功培育出人类免疫细胞!
2020年1月15日 讯 /生物谷BIOON/ --未来有一天,科学家们或许有望利用患者自身的皮肤细胞来产生新的细胞用于癌症免疫疗法或检测自身免疫性疾病的干预措施,近日,一项刊登在国际杂志Nature Cell Biology上的研究报告中,来自默多克儿童研究所的科学家们就实现了首次在全球范围内在培养皿中成功培育出了人类免疫细胞。图片来源:Murdoch C
我国科研人员培育出可生态还田的新型“脆秆水稻”
秸秆还田利用是一种生态环保的秸秆处理方式,但存在一系列技术难题。中科院研究人员历时5年培育出一种脆秆水稻品种“科辐粳7号”,今年以来试种显示其秸秆易粉碎、降解,不仅可还田还可作为牛羊饲料,同时稻米产量和品质不受影响,该品种日前通过了专家组审定。焚烧秸秆会污染环境,让其在田间自然降解、成为肥料是一种环保处置方式。但传统的水稻秸秆很有韧性难以折断、粉碎,机械收割机上需加装专门的粉碎设备,增
实验室培育的“迷你”大脑真会比人类大脑更加聪明吗?
2019年10月30日 讯 /生物谷BIOON/ --在实验室中,将细胞簇组装成为人类微型大脑版本的技术正在引起越来越多科学家们的关注,这些由干细胞转化而成的大脑类器官(brain organoids)能为人类大脑提供无与伦比的洞察力,而众所周知,这是很难进行研究的。但有些研究人员担心,这些迷你大脑可能会产生某种形式的意识,有时候其甚至还会移植到动物机体中,期至少能够感知痛苦和被困的程度,如果这是
iPS细胞研究新突破 可同时培育3种迷你器官
迄今利用诱导多能干细胞(iPS细胞)培育特定的细胞和脏器都是单独培育的。日本东京医科齿科大学日前宣布,该校研究人员与美国同行合作,利用人iPS细胞同时培育出了肝脏、胆管和胰脏3种迷你器官。研究成果已发表在英国《自然》杂志网络版上。据研究人员介绍,肝脏、胆管和胰脏3种器官在人体内是相连的,是在受精后8周左右时形成的前肠和中肠边界区域分化形成的。他们的研究就着眼于这些器官发育初期阶段时,前肠、中肠及周
Cell Metabol:首次在实验室中培育出转基因迷你肝脏组织 有望帮助研究肝脏疾病及开发新型疗法
2019年8月9日 讯 /生物谷BIOON/ --近日,一项刊登在国际杂志Cell Metabolism上的研究报告中,来自匹兹堡大学的科学家们通过研究在实验室中首次培育出了转基因(遗传修饰,genetically modified)的微型人类肝脏,其或有望帮助模拟人类肝脏疾病的进展及新型疗法的开发。图片来源:UPMC文章中,研究者阐明了他们如何将遗传工程化的人类细胞转化称为功能性的3D肝脏组织,