连发3篇Cell后,克隆猴团队发表Nature论文,在干细胞来源的猴胚胎模型中模拟晚期原肠胚形成过程
该研究首次利用干细胞类胚胎模型,实现了体外模拟灵长类晚期原肠运动发育过程,并重现原肠运动阶段的关键发育事件,为深入理解灵长类早期胚胎发育机制,及发育异常引起的早发流产和出生缺陷提供了强大的创新研究范式
2025-12-06
Nature Biotechnology:D-I-TASSER——深度学习与物理模拟“联手”,蛋白质预测超越AlphaFold
在CASP15盲测中,D-I-TASSER表现惊艳,在单域和多域蛋白质预测上均展现出卓越性能,超越了AlphaFold2和AlphaFold3!
2025-05-28
《免疫》:康奈尔团队发现,天选抗阿尔茨海默病突变的保护作用,抑制STING通路或可模拟!
研究者们这次彻底调查了APOE3 R136S突变的分子机制,发现它能够抑制小胶质细胞中tau蛋白诱导的cGAS-STING-IFN激活,降低tau负荷,防止tau蛋白诱导的突触丢失和神经元功能降低。
2025-06-30
最新研究打造阿尔茨海默病“微型人脑”,精准模拟大脑病变全过程
本研究以家族性阿尔茨海默病患者诱导多能干细胞为基础,构建脑类器官与诱导小胶质细胞样细胞整合的神经免疫组装体模型,成功重现疾病关键病理与炎症表型,为疾病机制研究和药物开发提供有力工具。
2025-10-29
从“缺血管少免疫”到“全真模拟”! Sci Adv:PDMS微孔平台构建含血管+小胶质细胞的视网膜类器官,破解眼病研究困局
研究用V型底部聚二甲基硅氧烷微孔平台共培养血管与视网膜类器官,成功生成含血管、小胶质细胞且具内血-视网膜屏障特征的模型,为视网膜血管病研究和临床应用铺路。
2025-10-20
新型仿生软骨类器官来帮忙,模拟真软骨实现精准修复!
本研究通过塑性压缩调控胶原纤维取向和硫酸软骨素梯度,制备出仿生软骨类器官。其在体外和体内实验中,均成功模拟天然软骨特征,实现软骨组织再生,为软骨修复提供了新途径。
2025-05-15
Science:突破性进展,深度学习+物理模拟,精准操控蛋白质“形态切换”,未来药物设计新路径
这项研究不仅成功地从头设计出能够精确切换两种预设构象的动态蛋白质,更实现了通过配体结合和远端变构突变对其构象平衡的精细调控。
2025-05-27