研究发现RIPK3蛋白RHIM结构域调控细胞死亡和炎症的新机制
5月19日,国际学术期刊Cell Reports 在线发表了中国科学院上海营养与健康研究所章海兵课题组的研究论文“Crucial roles of the RIP homotypic interaction motifs (RHIM) of RIPK3 in RIPK1-dependent cell death and lymphoprolife
Cell:从结构上详细阐明单结构域骆驼抗体可强效中和包括SARS-CoV、MERS-CoV和SARS-CoV-2在内的β冠状病毒
2020年4月27日讯/生物谷BIOON/---冠状病毒是一种有包膜的、正义RNA病毒,分为4个属(α、β、γ和δ),可感染多种宿主生物。至少有7种冠状病毒可引起人类疾病,其中4种病毒(HCoV-HKU1、HCoV-OC43、HCoV-NL63和HCoV-229E)在全球范围内季节性地在人群中流行,在大多数患者中引起轻度呼吸道疾病。剩下的三种病毒,即SARS
大脑中的位置细胞实时地在当前路径和可能的未来路径之间来回切换
2020年2月8日讯/生物谷BIOON/---生存通常取决于动物在一瞬间做出决策的能力,这些决策依赖于对许多种未来的选择方案的设想:如果一只动物被饥饿的捕食者追赶,它是否会向左拐安全回家还是向右拐引领着捕食者离开它的家人?当两条路径在黄色的树林中分开时,哪条路会让它安全去吃食物,哪条路让它成为捕食者的盘中之餐?这两条路看起来几乎是相同的,但是设想让一切都不同
新型水凝胶让癌细胞“共享实时位置”
天津大学仰大勇教授团队近日成功研发新型长余辉水凝胶。这种新型水凝胶进入活体后能够长时间标记在肿瘤细胞上发出近红外光,让癌细胞“共享实时位置”,追踪癌细胞的转移途径,有望成为癌症治疗的利器。相关成果现已发表于纳米科技领域权威期刊《纳米快报》。恶性肿瘤的转移是癌症治疗失败的主要原因。肿瘤转移是指肿瘤细胞从原发部位经淋巴道和血管等途径到达其他部位继续生
揭示植物TIR结构域是一种促进细胞死亡的NAD+切割酶
2019年8月27日讯/生物谷BIOON/---像人类和动物一样,植物在数百万年的时间里进化出复杂的免疫系统来抵御入侵的病原体。但与许多动物不同的是,植物缺乏抗体赋予的适应性免疫系统。这意味着每个植物细胞必须自我抵御所有潜在的病原体---这是一项艰巨的任务。隐藏在每个植物细胞内的由疾病抗性基因编码的蛋白复合物就像睡眠的军队,当检测到真菌或细菌等有害的病原体时就会醒来并激活防御。这些基因编码的性状被
FASEB J:脂质结合域也许是靶向治疗癌症的下一个靶标!
2019年4月30日讯 /生物谷BIOON /——正常细胞有一个复杂的平衡系统来调节细胞分裂。在癌症中,平衡倾向于细胞增殖。这种不平衡由癌蛋白(促进细胞生长的蛋白)水平或活性增加或抑癌蛋白(限制细胞生长的蛋白)的水平或活性减弱引起。例如,在正常细胞中,肿瘤抑制蛋白磷酸酶2 (PP2A)控制细胞的生长、迁移和永生,以控制细胞的生长。有些癌症,如肺癌,含有较高水平的癌蛋白,其名称为su(var)3-9
Frontiers in Neural Circuits:新研究揭示大脑识别机体位置的工作机制
2019年1月14日 讯 /生物谷BIOON/ --最近,科学家提出了一个关于人类大脑是如何工作的重要新理论。虽然神经科学家已积累了大量关于大脑的详细事实知识,但仍然没有关于智力是什么以及大脑如何产生它的统一理论。在最近的研究中,Numenta研究人员描述了一个广泛的框架,用于理解新皮质的作用及其工作原理。该论文发表在《Frontiers in Neural Circuits》杂志上。本文中描述的
亚洲医疗科技合作场域首选
医疗与科技结合,光速变革医疗产业范畴与未来生活。台湾在计算机、信息通及周边产业,稳居全球重要的供应链,加上台湾拥有全世界独一无二健保数据与医疗专业人才,是全球发展医疗科技最先进场域。 台湾Foxconn, Acer, Asus, BenQ, Wistron,已经积极布局healthcare。全球科技大厂 Google, NVIDIA, Microsoft更在台成立AI中心,全力发展医疗与
两篇Science揭示大脑定位系统确定自我和他者的空间位置机制
2018年1月15日/生物谷BIOON/---若要成功地成为社会动物,你需要知道你和他人所在的位置。如今,在一项新的研究中,来自日本理化学研究所脑科学研究所的研究人员鉴定出精确地执行这种功能---确定“自我(self)”和他者(“other”)在空间中的位置---的脑细胞。在大鼠中,存储这种动物自身位置的大脑区域(即海马体背侧CA1区域)也会记录其他大鼠的移动。取决于大鼠的目标和行动,有时这些位置
Sup35的朊蛋白结构域促进细胞适应环境变化
2018年1月9日/生物谷BIOON/---利用细胞内的相变(如相分离和凝胶化)形成动态的无膜区室为细胞对环境变化作出反应提供了一种有效的方法。近期的研究已鉴定出一类特殊的富含极性氨基酸(如甘氨酸、谷氨酰胺,丝氨酸或酪氨酸)的内在无序结构域(intrinsically disordered domain)是细胞中的相分离的潜在促进物。然而,更为传统的研究则强调了这些结构域促进纤维状聚集体形成的能力