打开APP

两篇Protein & Cell报道我国科学家进一步优化腺嘌呤碱基编辑系统

2018年8月2日/生物谷BIOON/---在两项新的研究中,来自中国华东师范大学和中山大学的两个研究小组在小鼠和大鼠品系中开发出一种被称作腺嘌呤碱基编辑器(adenine base editor, ABE)的碱基编辑系统,并对这种系统加以改进,这将对人类遗传疾病和基因疗法带来重大的影响。相关研究结果发表在开放存取的Protein & Cell期刊上,论文标题分别为“Increasing

2018-08-02

通过技术创新 驱动CAR-T制造优化

随着CAR-T疗法获批上市,优化CAR-T细胞生产工艺成为迫切需求,市场急需更高效、成本更低的细胞生产工艺。2017年全封闭自动化CAR-TXpress™系统正式进入CAR-T市场,为全球带来新一代CAR-T生产工艺,可实现CAR-T细胞高效率、低成本生产,备受瞩目。近日,《CELL & GENE THERAPY INSIGHTS》杂志采访了这项创新技术平台的主要发明者Phil

2018-05-25

CAR-T制造工艺的优化升级

2017年美国FDA批准CAR-T疗法上市标志着重要的里程碑。诺华公司的Kymriah以及吉利德公司的Yescarta是全球首批上市的CAR-T疗法,目前全球有多项CAR-T疗法正在申报中。与任何治疗一样,CAR-T疗法的主要挑战不仅在于安全性和有效性,还在于创建可行的商业供应链。CAR-T开发商不仅要克服安全性和有效性的障碍以通过监管部门审批,还须证明能够应对与制造相关的复杂性,并将这种个性化、

2018-05-10

优化每搏输出量 可为重症脓毒症患者减少1.4万美元治疗费用

 在非侵入性输液管理设备领先的Cheetah Medical公司今日宣布,首次公开6个月研究的主要经济数据显示,在Cheetah公司技术的指导下,每搏输出量的优化使得在ICU的住院时间缩短,同时降低了机械通气和急性透析的风险,在重症脓毒症和感染性休克患者中,总共节省了超过140万美元的成本。来自堪萨斯大学医疗卫生系的研究人员们进行的同一研究数据之前发表于“重症护理杂志”上,并在去年布鲁塞

2018-03-01

JACC:优化“他汀”疗法可用于改善肌肉症状

2017年8月29日 讯 /生物谷BIOON/ --他汀是一类有效的通过降低低密度脂蛋白含量而保护心脏病不会发作的药物。然而,目前有有10%-20%的患者在接受了他汀治疗之后出现了肌肉方面的症状,例如酸痛、疼痛以及抽筋等等,进而不能够坚持用药。对于这些患者来说,发生心血管疾病的风险也因此相对较高。为了解决这一问题,来自Mount Sinai的研究者们希望能够为这些患者找到降低心血管疾病发生风险的方

2017-08-29

天津工生所在优化丁二酸细胞工厂方面取得系列进展

 丁二酸是一种优秀的平台化合物,在化工、材料、医药、食品领域有着广泛的用途,被美国能源部列为未来12种最有价值的平台化合物之一。作为C4平台化合物,丁二酸可用于合成1,4-丁二醇、四氢呋喃、γ-丁内酯以及生物可降解材料聚丁二酸丁二醇酯(PBS)。构建高效生产丁二酸的微生物细胞工厂,将可再生的生物质资源高效转化为丁二酸,是近年来国际上的研究热点。糖酸转化率和耐渗透胁迫是丁二酸细胞工厂改造的

2017-08-28

优选感染生物标志物 优化感染性疾病诊疗

——《感染相关生物标志物临床意义解读专家共识》专家解读感染性疾病是严重的公共卫生问题和造成人类死亡的重要因素。据世界卫生组织(WHO)统计数据显示,全球每年约有1,500万人死于感染,约占全球每年总体死亡率的25.5%。大多数感染性疾病只要得到及时、准确的诊断,并给予科学合理的治疗,都有可能在相对较短的时间内彻底治愈。但由于某些感染性疾病可能无典型感染症状,而某些非感染疾病可能存在酷似感染的临床表

2017-08-06

Nature:揭示核糖体通过结构上的精确优化制造自我机制

模拟的核糖体(白色和紫色的亚基)加工一个氨基酸(绿色),图片来自Los Alamos National Laboratory。2017年7月22日/生物谷BIOON/---在一项新的研究中,来自美国哈佛医学院和瑞典乌普萨拉大学的研究人员利用数学方法证实核糖体在结构上的精确优化尽可能快地产生更多的核糖体,以便促进细胞高效地生长和分裂。核糖体是细胞的蛋白制造工厂。相关研究结果于2017年7月19日在线

2017-07-22

科学家成功优化CRISPR-Cpf1技术使其更加高效地编辑人类基因组

2017年6月21日 讯 /生物谷BIOON/ --近日,一项刊登在国际杂志Nature Chemical Biology上的研究报告中,来自斯克里普斯研究所的研究人员通过研究改善了当前最先进的基因编辑技术,使其能够更加精准地靶向切割并且粘贴人类和动物细胞中的基因,同时研究者还扩展了CRISPR-Cpf1基因编辑系统使其能够用来研究以及帮助抵御人类疾病。图片来源:The Scripps Resea

2017-06-21