科研人员开发基于深度学习模型的空间转录组精细分辨率细胞注释算法
STASCAN提供了用于整合空间基因表达信息和组织学图像进行精细分辨率细胞注释的工具,在解码细胞空间精细分布和解析特异组织结构方面具有优势。
2024-11-10
Nature Methods :“等深度”模型重塑空间生物学格局!深度学习与空间转录组学的完美结合
GASTON通过结合无监督的深度神经网络与可解释性算法,创新性地提出了“等深度”(Isodepth)的概念。
2025-02-01
Nature Methods:从序列到结构——RhoFold+深度学习模型实现RNA 3D预测的高效革命
通过结合深度学习和语言模型的力量,RhoFold+实现了对RNA 3D结构的高效预测,克服了传统方法的瓶颈,为RNA功能和应用的深入研究开辟了新天地。
2024-12-01
单细胞和空间转录组中环形RNA深度学习算法取得进展
CIRI-deep可以实现多种转录组测序数据中差异剪接环形RNA的可靠预测,并在单细胞及空间水平实现细胞类型特异环形RNA的准确解析,具有广泛的应用场景。
2024-02-21
Genome Biol:杨力组开发基于深度学习的计算分析框架实现RNA测序数据直接鉴别RNA编辑与DNA突变位点
DEMINING框架通过嵌入的深度学习模型DeepDDR,实现了从RNA测序数据中高效、精确地鉴定RNA编辑和DNA突变。
2024-10-16
Nature Methods:肿瘤进化的空间图谱:CalicoST算法揭示癌症克隆的基因组与空间演化
CalicoST算法的核心优势在于其能够从SRT数据中精确推断等位基因特异性拷贝数变异(allele-specific CNAs)。
2024-11-23
Nature Methods:肿瘤进化的空间图谱,CalicoST算法揭示癌症克隆的基因组与空间演化
CalicoST算法的诞生填补了这一空白。它不仅能够从空间转录组数据中推断出肿瘤的等位基因特异性拷贝数变异,还能够重建肿瘤克隆在空间中的进化轨迹,绘制出肿瘤演化的“进化地图”。
2024-11-10
研究提出可用于癌症驱动基因识别的图机器学习模型
该模型通过构建精准的癌症基因调控图谱,有望为个性化医疗和精准药物研发开辟新途径。同时,该模型在整合多组学数据和复杂网络分析方面的优势,使其具备跨疾病和跨领域应用的潜力。
2025-01-18