打开APP

PNAS:机体疼痛感受器所释放的HMGB1分子或能介导炎症的发生和进展

来自Feinstein医学研究所等机构的科学家们通过研究成功控制了能释放分子蛋白并开启/关闭机体炎症的神经元,相关研究结果或有望帮助开发新方法来治疗以炎症和疼痛为主要特征的疾病,比如关节炎等。

2021-08-27

睡莲属植物细胞RNA转录后加工研究取得进展

植物细胞中有三个相对独立的基因组,即核基因组、叶绿体基因组和线粒体基因组,后两者常被称为细胞器基因组。RNA转录后加工,内含子剪接、RNA编辑、5’和3’端成熟等在植物细胞器基因组的基因表达和调控中很常见。植物细胞器RNA编辑已有报道,包括无油樟(Amborella trichopoda)及鹅掌楸(Liriodendron tulipifera)的细胞器RN

2021-09-15

Cell Reports:水稻低温感受器下游调控机制研究取得进展

温度是影响水稻品种形成和地域分布的主要环境因子。亚洲栽培稻分为籼稻和粳稻两个亚种,籼稻低温耐受性较弱,主要分布在我国华南和淮河以南的热带/亚热带地区;粳稻低温耐受性较强,主要分布于我国北部和东北部。目前,学界对籼、粳稻低温耐受性差异的分子基础已有一定的了解,低温感受器编码基因COLD1在籼、粳稻之间存在明显差异,COLD1中单个核苷酸变化能够明显改变水稻的耐

2021-07-24

Cell Reports:发现水稻低温感受器COLD1调控维生素E-K1网络耐寒新机制

  温度是影响水稻品种形成和地域分布的主要环境因子。亚洲栽培稻分为籼稻和粳稻两个亚种,籼稻低温耐受性较弱,主要分布在我国华南和淮河以南的热带/亚热带地区;粳稻低温耐受性较强,主要分布于我国北部和东北部。目前,学界对籼、粳稻低温耐受性差异的分子基础已有一定的了解,低温感受器编码基因COLD1在籼、粳稻之间存在明显差异,COLD1中单个核苷酸

2021-07-22

Nat Methods:多巴胺感受器揭示大脑的化学信号

2018年,近日,加州大学戴维斯分校健康分校的团队开发了一种名为“dLight1”的基于荧光蛋白的生物传感器。这一种高特异性传感器可检测多巴胺,即神经元释放的一种可向其他神经细胞发送信号的化学分子。与先进的显微镜结合使用时,dLight1可提供高分辨率,实时成像的活体动物多巴胺时空释放特征。

2020-09-16

Nature:科学家发现肠-脑回路糖分感受器 或能解释为何我们对糖类无比热爱?

2020年5月9日 讯 /生物谷BIOON/ --人工甜味剂似乎从来没有完全成功模拟过糖,近日,一项刊登在国际杂志Nature上的研究报告中,来自哥伦比亚大学等机构的科学家们通过对小鼠研究识别出了一种可能解释这种现象的大脑机制。图片来源:Hwei-Ee Tan/Zuker lab/Columbia's Zuckerman Institute研究者发现,大脑不

2020-05-09

肠道疼痛感受器如何帮助机体有效抵御病原体感染?

2020年4月28日 讯 /生物谷BIOON/ --一般认为,肠道中有害细菌的识别和中和是由上皮细胞和免疫细胞协调来完成的,近日,一篇发表在Cell杂志上的研究报告中,研究者Lai等人就报道,一类肠道神经元亚群或在肠道应对感染的反应中扮演着意想不到的关键作用。图片来源:iran-daily.com肠道会接触食物、抗原(如果被识别为“非自我”的话,则会诱发机体

2020-04-28

科学家揭示了肠内伤害感受器介导宿主防御机制

 近日,美国哈佛医学院等科研机构的科研人员在Cell上发表了题为“Gut-Innervating Nociceptor Neurons Regulate Peyer’s Patch Microfold Cells and SFB Levels to Mediate Salmonella Host Defense”的文章,揭示了肠内伤害感受器神经元通

2020-01-13

Mol Metab:寻找肥胖与心衰中的消炎“感受器

2019年11月23日 讯 /生物谷BIOON/ --心脏病发作后,几种来源于脂肪酸的生物活性分子-包括一种称为resolvin D1的分子-在安全清除炎症并帮助修复心肌方面起着至关重要的信号作用。然而,该分子在修复心肌方面的分子机制尚不清楚。 在许多免疫细胞的表面上有一个称为ALX / FRP的受体,在动脉粥样硬化模型中,ALX / FPR2被认为是帮助解决炎症的传感器。 阿

2019-11-23

Nat Commun:将危险毒素变为生物感受器

2019年11月1日 讯 /生物谷BIOON/ --某些类型的细菌具有给其他细胞“打孔“并杀死它们的能力。他们通过释放被称为“成孔毒素”(PFT)的特殊蛋白质来实现此目的,该蛋白质锚定在细胞膜上并形成”管状”通道,并最终导致细胞的“自我毁灭”。 除已知的“感染”细胞的能力外,PFT在其它方面的潜力也引起了人们的极大兴趣。例如,它们形成的纳米级孔可以用于“感测”DNA或RNA等生物分子。

2019-11-01