科学家通过破坏细胞DNA修复的“跷跷板”来成功杀灭癌细胞
2018年1月11日 讯 /生物谷BIOON/ --近日,一篇发表在国际杂志Journal of Clinical Investigation上的研究报告中,来自埃默里大学的研究人员通过研究发现,癌细胞依赖的一种免于细胞死亡的特殊蛋白或能帮助调节癌细胞的DNA修复。文章中,研究者阐明了如何使得这种名为Mcl-1的蛋白质失去功能来促进癌细胞对DNA复制压力变得更加敏感,靶向作用Mcl-1蛋白的化合物
Science:我国科学家解析出DNA修复关键组分Mec1-Ddc2的三维结构
图片来自中国科技大学,结构图:Guoyan Wang和Yanbing Ma;这种结构是基于酵母Mec1-Ddc2复合物(EMDB ID EMD-6708)的低温电镜图而获得的。2017年12月3日/生物谷BIOON/---细胞不断地复制以便修复和替换受损组织,而且每次细胞分裂都需要复制DNA。 当DNA复制时,错误不可避免地发生,这会造成DNA损害,如果不加以修复的话,那么这可能导致细胞死亡。作为
Nature和Science同日打擂台发表新型DNA/RNA碱基编辑器,可校正点突变
2017年10月26日/生物谷BIOON/---自从5年前CRISPR热潮开始以来,科学家们就竞相开发这种强大工具的更加全面或高效的版本,从而能够极大地简化DNA编辑。本周发表在Science期刊和Nature期刊上的两项研究进一步扩大了CRISPR的使用范围,开发出一种更加微妙的被称作碱基编辑(base editing)的方法来修复遗传物质:一项研究扩展了一种编辑DNA的策略[1],而另一项研究
Scicence:ZATT蛋白能够修复癌症治疗产生的DNA损伤
2017年10月8日/生物谷BIOON/---最近,来自NIH的研究者们首次发现了细胞修复严重的DNA损伤—“DNA-蛋白质交联(DPC)”。研究者们发现一类叫做ZATT的蛋白质能够与另外一类叫做TDP2的蛋白质合作抑制DPC的发生。由于DPC往往在癌症患者接受特定治疗之后出现,因此对这一机制的理解能够有助于提升癌症患者的健康水平。相关结果发表在最近一期的《Science》杂志上。根据该文章的通讯
利用CRISPR-Gold在体内诱导同源介导的DNA修复
CRISPR-Gold由15纳米的金纳米颗粒组成,这些金纳米颗粒偶联着经过硫醇修饰的寡核苷酸(DNA-Thiol),这种DNA-Thiol与单链供者DNA杂交,随后与Cas9形成复合物,并且被一种破坏细胞的內吞体的聚合物包裹着。图片来自Murthy/Conboy/Nature Biomedical Engineering。2017年10月5日/生物谷BIOON/---虽然很有前景,但是CRISPR
揭示蛋白CYREN调节细胞选择DNA修复途径之谜
图片来自沙克生物研究所。2017年9月23日/生物谷BIOON/---是快速地做事情但会犯错误更好,还是做得慢些但做得完美更好呢?当决定选择如何修复DNA中的断裂时,细胞在两种主要的修复途径之间面临着同样的选择。这种决定比较重要,这是因为错误的决定可能导致更多的DNA损伤和癌症。如今,在一项新的研究中,来自美国沙克生物研究所、加州大学圣地亚哥分校和英国弗朗西斯-克里克研究所的研究人员发现一种被称作
研究揭示转录中介体MED23亚基在色素合成和DNA修复的调控机制
近日,中国科学院上海生命科学研究院生物化学与细胞生物学研究所王纲研究组的研究成果以Mediator MED23 Links Pigmentation and DNA Repair through the Transcription Factor MITF为题在线发表在Cell Reports上。该项研究揭示了转录中介体复合物MED23亚基参与调控色素细胞的色素合成与DNA损伤修复过程。
揭示一种新的DNA损伤修复机制
2017年7月18日/生物谷BIOON/---DNA修复系统能够修复活性氧、活性羰基化合物、烷化剂、紫外线辐射、脱氧尿嘧啶整入和复制错误导致的DNA损伤。DNA修复机制包括核苷酸池消毒(nucleotide pool sanitization)、直接修复(DR)、碱基切除修复(BER)、核苷酸切除修复(NER)、错配修复(MMR)、同源重组修复(HRR)和非同源末端连接(NHEJ)。糖化是体内的一
PNAS:科学家成功绘制出吸烟引发的DNA损伤修复障碍的图谱
2017年6月13日 讯 /生物谷BIOON/ ---几十年来,科学家们早就已经知道吸烟能够引起DNA的损伤,进而引发肺癌的发生。如今,来自NUC医学院的科学家们首次描绘出了全基因组DNA损伤的高分辨率图谱。这一创新性的研究是由来自UNC医学院的诺贝尔奖获得者Aziz Sancar博士领导作出的,相关结果发表在《PNAS》杂志上。Sancer等人开发出了一类描绘基因组损伤修复的图谱的方法,并通过该
科学家找到受损 DNA 修复“关键”,抗癌新方法有望问世!
德雷塞尔大学和佐治亚理工学院的研究人员发现,Rad52 蛋白质是 DNA 修复的关键所在。最新的研究发表结果发表于《分子细胞》杂志中,在报道中,研究人员解释了 Rad52 蛋白质同源重组的重要功能,这一发现有助于确定治疗癌症的新目标目标。放疗和化疗可引起 DNA 双链断裂,其中最大的损害就是 DNA 的损伤,同源重组在 DNA 修复过程中起着至关重要的作用,这个过程包括两个 DNA 分子的遗传信息