新机制!Caspase-4/11通过Notch1信号对血管生成起关键作用
该研究发现揭示了CASP4/11在成人血管生成中的关键作用,并使该分子成为未来血管生成相关疾病的有希望的治疗靶点。
Microbiology Spectrum:中国农业科学院农产品加工研究所生物毒素团队揭示黄曲霉Fus3-MAPK信号路径调控黄曲霉生长及毒素合成新机制
粮食安全关乎国计民生,减少粮食产后损耗是保障粮食安全的重要途径,是增加粮食有效供给的“无形良田”,等同于粮食增产。霉菌及毒素污染是导致粮食品质劣变,造成粮食产后损失的最主要原因之一,严重威胁粮食安全。黄曲霉是一种广泛分布的腐生丝状真菌,其次级代谢产物黄曲霉毒素B1 (AFB1),是迄今为止发现的最具毒性、最具致癌性的天然化合物,毒素通过污染粮食、饲料等进入食
The Plant Cell:揭示磷脂酸PA调控植物低氧信号转导的新机制
低氧是影响植物生长发育与产量最常见的非生物胁迫之一。洪涝/水淹造成的淹没或积水降低了植物所处环境中的氧气浓度,使细胞处于缺氧状态,从而影响植物正常生理代谢和生长发育,导致作物减产甚至绝收,威胁农业安全。因此,研究植物对低氧胁迫的感知和信号转导机制,对于深入理解植物水淹适应性、保障洪涝灾害后作物稳产具有重要的科学和实践意义。目前,植物低氧响应的生理适应性机制已
Nature Metabolism:揭示Hh信号通路通过Hilnc参与肝脏脂质代谢的新机制
Nature Metabolism在线发表了中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)赵允研究组的最新成果(Loss of Hilnc prevents diet-induced hepatic steatosis through binding of IGF2BP2)。该研究揭示了Hedgehog(Hh)信号通路调控Hil
Hepatology:研究揭示PPARα通过YAP-TEAD信号促进肝增大和肝再生的新机制
肝脏移植和部分肝切除是目前治疗肝癌、肝硬化等终末期肝病首选的最有效手段。肝脏再生能力是肝损伤、部分肝切除及肝移植术后修复与预后的关键,但调控肝再生的有效靶点和干预药物匮乏。因此,深入研究肝再生机制与潜在靶点有重要意义。中山大学药学院毕惠嫦教授团队在Hepatology杂志在线发表了题为“YAP-TEAD mediates peroxisome prolife
Hepatology:发现糖代谢关键酶调控胰岛素受体信号通路新机制
Hepatology在线发表了中国科学院上海营养与健康研究所研究员尹慧勇研究组题的研究成果ALDOB Depletion Promotes Hepatocellular Carcinogenesis through Activating Insulin Receptor Signaling and Lipogenesis。该研究揭示了糖代谢关键酶——果糖-1
eLife:揭示TCR信号调控核孔复合物组装的新机制
T细胞受体TCR信号是调控T细胞免疫的决定性因素。TCR信号通过一系列精准调控的级联转导,激活并诱导关键转录因子AP-1, NFκB及NFAT的核转位,从而活化T细胞,产生T细胞免疫效应。关于TCR信号如何经蛋白激酶PKCθ激活 AP-1一直是令人困惑的问题。揭开谜底,将帮助我们深入认识TCR信号的调控机制,并为更有效的免疫治疗提供新视角。核孔复合物(NPC
研究揭示Hedgehog信号途径稳态调控新机制
北京大学生命科学学院朱健课题组近期在Journal of Cell Biology发表了题为“Competition between two phosphatases fine-tunesHedgehog signaling”的研究论文。该项研究发现了磷酸酶PP6的催化亚基PpV特异地调控Hedgehog (Hh) 信号途径,阐释了P
研究发现细胞套亡通过p53信号对抗上皮细胞基因组不稳定性新机制
有丝分裂(mitosis)是动物细胞的基本分裂形式,该过程受到严格调控,以保证产生正常子代细胞,进而维持细胞的更新换代和人体的生长发育。当有丝分裂发生异常时,通常会激活细胞纺锤体组装检查点(spindle assemble checkpoint, SAC)【1】,延缓有丝分裂以修复异常。然而,一些细胞会“逃过”该监视过程分裂产生非整倍体子代细胞(
研究揭示干扰素信号通路的调控新机制
干扰素(IFN)信号通路是天然免疫的主要组成部分,在宿主抵抗病原体中发挥重要作用;IFN的产生和下游通路的激活受到精密的调控。转录因子STAT1是IFN通路的关键效应因子,IFN信号通路激活时,STAT1蛋白被其激酶JAK1磷酸化修饰,进而形成异源或同源二聚体,并转移入核调控下游靶基因的转录激活。RNF220是RING泛素连接酶家族的一员,中国科