打开APP

外泌体及其蛋白质组学研究

 外泌体是什么?外泌体(Exosome),是一种能被大多数细胞分泌的微小膜泡,具有脂质双层膜结构,直径大约40-200 nm。外泌体存在于体液中,包括血液、唾液、尿液和母乳等,不同组织来源的外泌体在内容物组成和功能方面存在差异,这种差异受到细胞外基质和微环境的动态调控。越来越多的证据表明,宿主细胞或肿瘤细胞分泌的外泌体参与了肿瘤发生、生长、侵袭和转移。对外泌体的分析和检测可以辅助疾病的早

2018-12-27

科学家开发出一种能对单一血液样本中成百上千种蛋白质检测的新技术!

2019年1月8日 讯 /生物谷BIOON/ --近日,一项刊登在国际杂志Nature Nanotechnology上的研究报告中,来自麦吉尔大学的科学家们通过研究开发了一种新技术,其能对单一样本中成百上千种蛋白质进行检测,该技术未来有望作为医院和研究性实验室快速、高容量及高性价比的工具进行使用。图片来源:insight.mrc.ac.uk血液中的蛋白质能为研究者和临床医生提供指示机体健康的关键信

2019-01-08

UBL3影响蛋白质向小型胞外囊泡转化

 外泌体是一种小型胞外囊泡(sEVs),来自于多泡体(MVBs),通过运输蛋白质、mRNA和miRNA介导细胞间的通信。然而,哪类蛋白质被归为sEVs的分子机制还不是完全清楚。在这里,作者报道了泛素样3(UBL3)膜锚定的Ub折叠蛋白MUB作为翻译后修饰因子PTM调节蛋白向胞外囊泡转化。作者发现UBL3的修饰对于将UBL3归类到MVBs是不可缺少的。同时作者还发现从UBL3缺失型小鼠样本

2018-12-27

年终盘点:2018蛋白质修饰研究的现状与未来

蛋白质翻译后修饰(PTM)包括磷酸化、甲基化,乙酰化等。蛋白质表达受基因组和表观遗传学的调控,并且在表达以后还需要经过不同程度的修饰才能发挥所需要的功能,PTM研究至关重要。下面让我们看看2018年蛋白质修饰领域有哪些重要研究。【1】PNAS:泛素样蛋白ubiquilin 2(UBQLN2)调节ALS/FTD连接的FUS-RNA复合物动力学和应激颗粒形成doi: 10.1073/pnas.1811

2018-12-25

Cell:开发出分析蛋白质-RNA互作网络的新型工具 有望开发癌症等多种疾病的新型疗法

2018年12月11日 讯 /生物谷BIOON/ --所有RNA分子在完成重要任务时都需要蛋白质作为结合伴侣,近日,一项刊登在国际杂志Cell上的研究报告中,来自德国癌症研究中心等机构的科学家们通过研究首次开发出了一种新方法,这种新方法能帮助分析细胞中完整的RNA蛋白网络的组成情况。RNA分子在细胞中能发挥重要的作用,比如信使RNA分子(mRNA)能够帮助将储存在DNA中的遗传信息翻译成为蛋白质,

2018-12-10

鉴定出细胞中蛋白质量控制的关键组分

2018年12月3日/生物谷BIOON/---作为我们的细胞的主要成分,蛋白执行着必要的任务来保持我们的细胞---和我们的身体---正常地发挥功能。但是蛋白只有折叠成正确的形状才能完成它们的工作。当蛋白发生错误折叠时,细胞能够尝试着通过让蛋白重新折叠或破坏它来拯救这一点,但是细胞如何做出这个决定一直是个谜。在一项新的研究中,来自美国斯坦福大学的研究人员鉴定出这个决定中的关键分子参与者。这一基本知识

2018-12-03

一场关于蛋白质的战争:为什么男人喜欢吃肉?

2018年11月23日 讯 /生物谷BIOON/ --很明显,除非你是一名年龄较大的白人男性,否则加拿大的肉类摄入将会减少,这样说或许有些夸张,因为目前许多加拿大人仍然需要定期吃肉,事实上,很多人认为吃肉是平时生活乐趣之一,同时也是平衡饮食的必要组成部分,甚至有些人还认为吃肉是个体所拥有的一项基本权利。图片来源:commons.wikimedia.org最近,来自戴尔豪斯大学的一项研究结果表明,超

2018-11-23

转录组层面上研究蛋白质-RNA相互作用的技术及方法综

两周前,小编给大家推荐了清华大学张强峰教授在QB期刊上发表的关于转录组层面上研究RNA-RNA相互作用的干湿实验方法的综述文章后(点击这里进入该篇文章),引起了许多小伙伴的关注。并且也有小伙伴问,RNA在转录组层面上的相互作用不仅有RNA-RNA之间的,应该还有蛋白质-RNA之间的相互作用呢!那关于RNA-蛋白质相互作用的研究进展又如何呢?     

2018-11-23

蛋白质基均孔分离膜取得进展

 小编推荐会议:2018(第三届)蛋白质修饰与疾病研讨会 膜分离已逐渐成为解决日益恶化的空气、水环境污染和水资源短缺的核心技术之一。目前广泛应用的高分子膜和无机膜,由于成膜材料和成膜方法的限制,膜有效孔径分布较宽、选择分离层较厚,一方面不能保证高的分离精度,另一方面也导致分离的选择性和通量相互制约。因此设计具有均一孔径的超薄分离膜实现高精度、高通量分离是分离膜材料研究领域的重要

2018-10-19