植物超低温保存机理研究获新进展
超低温保存(cryopreservation)是在液氮(-196℃)中保存细胞、组织和器官的技术,广泛应用于动物、植物和微生物种质资源的长期保存。植物超低温保存通常与离体培养技术(in vitro culture)相结合,可以实现花粉、愈伤组织、体细胞胚、合子胚、种子、离体分生组织和休眠芽的长期安全保存。重要农作物和观赏植物的超低温保
研究建立植物高效引导编辑设计策略
实现重要农作物精准基因组编辑对加快农作物遗传改良进程具有重要意义。引导编辑技术(Prime Editing)能够在基因组的靶位点处实现精准的片段插入、删除及碱基的任意替换。引导编辑系统由两部分构成:一部分是nCas9(H840A)与工程化改造的逆转录酶(Reverse Transcriptase, RT)融合构成的PE效应蛋白;另一部分是包含PB
植物-病原菌互作的营养转运机制研究方面取得新进展
近日,西北农林科技大学康振生院士团队与马里兰大学萧顺元教授团队合作在New Phytologist杂志在线发表了题为“AtSTP8, an endoplasmic reticulum-localized monosaccharide transporter from Arabidopsis, is recruited to
分子植物科学卓越创新中心发现HYL1蛋白调控miRNA介导的翻译抑制过程
中国科学院分子植物科学卓越创新中心/植物生理生态研究所研究员何玉科研究组在The Plant Cell上,发表了题为Cytoplasmic HYL1 modulates miRNA-mediated translational repression的研究论文。该研究组发现,HYL1蛋白除了介导microRNA (miRNA)的转录后调
科研人员破解豆科植物在“恐龙大灭绝”时期幸存“密码”
中国科学院昆明植物研究所22日发布消息称,该所科研人员参与的研究团队在豆科系统发育基因组学和根瘤菌固氮共生演化研究中取得新进展,破解豆科植物在“恐龙大灭绝”时期得以幸存并繁衍成为被子植物最成功的类群之一的“密码”。豆科是开花植物中最大的科之一,有约765属近20000种,贡献全球27%的作物产量。研究显示,豆科的祖先起源于大约距今67
Nature重磅:你知道植物靠什么抵御严寒酷暑、害虫啃食吗?
大家有没有思考过这个问题?人类和动物依赖自身的免疫系统维持机体稳态和健康,那植物靠什么撑过严寒酷暑、风吹日晒的呢?如何抵御害虫的啃食、微生物的侵染呢?没想到吧,答案是植物免疫系统。说实话,小编之前也是不知道的,那我们一起探索大自然的神奇吧!自然生态系统中,植物免疫系统对于植物生存和庄稼的产量至关重要。研究表明,植物有两级先天免疫系统,
研究阐释植物激素介导的植物-病毒相互作用机制
植物病毒是威胁植物健康及作物产量和品质的重要病原,给农业生产造成了严重损失。在植物寄主与病毒长期的共进化过程中,病毒能够利用多种策略改变宿主的细胞环境,从而更有利于自身复制和传播。为了应对病毒的侵染,植物也建立了多种防御机制。激素是一类内源性小分子物质,主要包括生长素(Auxin)、细胞分裂素(CKs)、赤霉素(GAs)、水杨酸(SA
科学家发现人类所患的多病症或拥有共同的起源!
2021年3月23日 讯 /生物谷BIOON/ --近日,一篇发表在国际杂志Nature Medicine上题为“Plasma metabolites to profile pathways in noncommunicable disease multimorbidity”的研究报告中,来自剑桥大学等机构的科学家们通过研究识别出了能够增加个体罹患一种甚至多
研究揭示人源TRPC5通道被不同小分子所抑制的结构基础
TRPC5是受体激活的非选择性阳离子通道,属于瞬时受体电位通道(TRP)家族中的经典型亚家族(TRPC)1。TRPC5通道的激活将引起细胞膜去极化和胞质内钙浓度上升。TRPC5通道主要表达于脑组织,在肝脏、肾脏等器官中也有一定程度的分布2-4。TRPC5介导多种生理过程,与恐惧、焦虑、抑郁等情绪的产生以及进行性肾脏疾病有关5,6。近期
理化所新型碳基纳米材料的生物应用研究取得进展
癌症治疗是目前医学领域的难题,而癌细胞的扩散是癌症常见的死因。由于癌细胞迁移机制复杂,至今对其了解甚少。纳米金刚石由于其良好的生物相容性和易于被功能化修饰的特性,使其作为药物载体材料在生物医学领域具有广泛的应用。中国科学院理化技术研究所光电功能界面材料实验室自2010年开始研究基于纳米金刚石的癌症治疗体系,发现在酸性细胞环境内,纳米金