首页 » 标签 :“微流控”(共找到约106条相关新闻)
  • 基于微流控纸芯片的环境与生物分析研发取得系列进展

    严重的环境污染问题,给社会经济的可持续发展和人民的健康带来了巨大的影响,同时,生物分析与医学诊断技术可直接造福人类健康与疾病治疗。目前,环境与生物分析都亟需更低成本、高效率、快速即时的分析传感方法。微流控纸芯片的发展为构建新型分析平台提供了思路,尤其是在环境监测和医学诊断方面,纸基装置的低成本、高效便捷等优势有利于快速分析检测,因此,纸基微流控芯片的发展成为

  • 研究利用液滴微流控系统实现高通量类器官可控负载与培育

    近日,中国科学院大连化学物理研究所微流控芯片研究组研究员秦建华团队在实现功能类器官可控负载与培育研究方面取得新进展,建立了一种基于双水相液滴微流控系统的杂合水凝胶微囊可控制备新体系,可高通量产生干细胞来源胰岛类器官,并利于降低其变异性。类器官(organoids)是近年来新兴的体外3D器官模型,被认为是生命科学领域的重大技术突破。类器官指的是一种在体外培育,

  • Nature Communications:微流控设备捕获脑肿瘤脱落的细胞外囊泡

     精确的癌症治疗依靠获得有关肿瘤的分子信息来指导有效的治疗决策。由于脑肿瘤的针头活检是侵入性的且困难的,因此生物工程师已经开发了捕获脑肿瘤释放的细胞外囊泡(EV)的微技术。囊泡携带突变的遗传物质和蛋白质样品,引起恶性肿瘤,研究人员希望对其进行分析以优化治疗方法。尽管它们携带大量信息,但来自肿瘤的电动汽车是非常小的颗粒,由脂质制成,并且相对罕见。因此

  • 国内微流控技术:IVD产业最早迎收获期

      微流控技术的诞生,是研发人员对自动化以及效率的最大化追求。上世纪50年代末,美国诺贝尔物理学奖得主Richard Feynman教授预见未来的制造技术将沿着从大到小的途径发展,他在1959年使用半导体材料将实验用的机械系统微型化,从而造就了世界上首个微型电子机械系统(Micro-electro-mechanical Systems,M

  • 茶叶也能“寻根”:Fluidigm微流控技术助力乌龙茶种质鉴定

    近日,福建农林大学联合福建省出入境检验检疫局的研究小组在Tree Genetics & Genomes发表最新论文《Genetic diversity of oolong tea (Camellia sinensis) germplasms based on the nanofluidic array of single-nucleotide pol

  • 微流控精准组装及外消旋体手性测量研究取得进展

    近日,中国科学院国家纳米科学中心孙佳姝课题组在微流控精准组装及外消旋体手性测量方面取得进展。相关研究成果“Enantiomorphic Microvortex-Enabled Supramolecular Sensing of Racemic Amino Acids using Achiral Building Blocks”于12月18日在线发表于《德国应

  • 微流控构筑微纳功能材料及其生物医学应用

      近日,中国科学院深圳先进技术研究院医工所纳米调控研究中心副研究员杜学敏(通讯作者)及其团队成员赵启龙(第一作者)、崔欢庆(共同第一作者)和王运龙在材料领域期刊Small上发表微流控构筑微纳功能材料及其生物医学应用综述,全面总结了基于微流控技术构建形态、形貌、结构、组成乃至性能精准可调的微纳功能材料的研究进展,并详细评述了这类材料在疾病诊断、药物递送、组织修复等多领域的应用和

  • 微流控结合微波技术,实现更精确的癌症筛查

      为了检测恶性肿瘤或监测癌症治疗的有效性,必须提取病人的组织,送到实验室,由病理学家染色并分析,这一过程可能需要花费数天才能完成,并且有可能会出现人为错误。理海大学(Lehigh University)材料科学与工程系助教Xuanhong Cheng,以及电气工程与计算机系的教授James Hwang萌生了一些不一样的想法。两位工程师展望未来,设想利用微波技术表征小型微流控

  • 新型微流控芯片实现电场捕获细胞

      一些与其它细胞不同的微小细胞会产生很大的影响。例如,某些个体癌细胞可能不利于特定的化学疗法,从而导致本来可以治愈的患者复发。据麦姆斯咨询报道,在德国期刊《应用化学》(Angewandte Chemie)上,科学家们推出了一款可以操纵单个细胞并随后进行核酸分析的微流控芯片。该技术利用局部电场高效“捕获”细胞(介电泳)。对单个细胞的分子分析能够帮助更好地理解异质细胞在疾病发展中

  • 微流控装置助力研究人员解密血流中的红细胞形状变化

     红细胞的形状取决于它们在体内的位置,据麦姆斯咨询报道,德国和法国的研究人员使用微流控装置结合数值模拟,以获取这种形状变化如何发生的重要新见解。红细胞是盘状物体,直径约为8微米,几乎占血液成分的一半。在静止时,细胞呈现对称的双凹盘形状,其边缘比中心厚。微流控装置助力研究人员解密血流中的红细胞形状变化它们不是刚性颗粒,包含由细胞膜包裹的液态细胞质,使得整个细胞结构具有柔性。当细胞在体内穿行