打开APP

Photoreceptors and Image Processing Part 1A - Jeremy Nathans

本视频由科普中国和生物医学大讲堂出品

Jeremy Nathans (Johns Hopkins) Part 1A: Photoreceptors and Image Processing

In this set of lectures, Jeremy Nathans explores the molecular mechanisms within the retina that mediate the first steps in vision. The first lecture focuses on the structure of the light sensing receptors, the intracellular signals that are triggered by light absorption, and the ways in which the retina extracts information from a complex scene. See more at http://www.ibioseminars.org

2016-01-08 课时:36分钟

Photoreceptors and Image Processing Part 1B - Jeremy Nathans

本视频由科普中国和生物医学大讲堂出品

Jeremy Nathans (Johns Hopkins) Part 1B: Photoreceptors and Image Processing

In this set of lectures, Jeremy Nathans explores the molecular mechanisms within the retina that mediate the first steps in vision. The first lecture focuses on the structure of the light sensing receptors, the intracellular signals that are triggered by light absorption, and the ways in which the retina extracts information from a complex scene. See more at http://www.ibioseminars.org

2016-01-08 课时:34分钟

GE:Dharmacon siRNA 文库产品应用解决方案

GE Dharmacon是siRNA全基因组文库的发明者,拥有RNAi产品领域最多的专利和相关知识产权。Dharmacon pre-defined siRNA文库是目前应用最广泛、客户最值得信赖的siRNA文库。同时,Dharmacon牵头成立的RNAi全球协议组织(RGI)的60多个知名科研院所成员使用Dharmacon siRNA文库取得了良好的效果。siRNA文库筛选加速了基因功能的研究,加深了疾病发生机理的研究,并获得了更多新的药物作用机理和潜在药物靶点,已经成为获得高质量研究数据和加速研究进程的必备工具。

2016-04-06 课时:29分钟

Protein synthesis: a high fidelity molecular event

Rachel Green (Johns Hopkins U., HHMI) 1: Protein synthesis: a high fidelity molecular event

Talk Overview:
In her first talk, Green provides a detailed look at protein synthesis, or translation. Translation is the process by which nucleotides, the “language” of DNA and RNA, are translated into amino acids, the “language” of proteins. Green begins by describing the components needed for translation; mRNA, tRNA, ribosomes, and the initiation, elongation, and termination factors. She then explains the roles of these players in ensuring accuracy during the initiation, elongation, termination and recycling steps of the translation process. By comparing translation in bacteria and eukaryotes, Green explains that it is possible to determine which components and steps are highly conserved and predate the divergence of different kingdoms on the tree of life, and which are more recent adaptations.
Green’s second talk focuses on work from her lab investigating how ribosomes detect defective mRNAs and trigger events leading to the degradation of the bad RNA and the incompletely translated protein product and to the recycling of the ribosome components. Working in yeast and using a number of biochemical and genetic techniques, Green’s lab showed that the protein Dom34 is critical for facilitating ribosome release from the short mRNAs that result from mRNA cleavage. Experiments showed that Dom34-mediated rescue of ribosomes from short mRNAs is an essential process for cell survival in higher eukaryotes.

Speaker Biography:
Rachel Green received her BS in chemistry from the University of Michigan. She then moved to Harvard to pursue her PhD in the lab of Jack Szostak where she worked on designing catalytic RNA molecules and investigating their implications for the evolution of life. As a post-doctoral fellow at the University of California, Santa Cruz, Green began to study how the ribosome translates mRNA to protein with such accuracy.

Currently, Green is a Professor of Molecular Biology and Genetics at the Johns Hopkins School of Medicine and an Investigator of the Howard Hughes Medical Institute. Research in her lab continues to focus on the ribosome and factors involved in the fidelity of eukaryotic and prokaryotic translation.

Green is the recipient of a Johns Hopkins University School of Medicine Graduate Teaching Award as well as the recipient for numerous awards for her research. She was elected to the National Academy of Sciences in 2012.

2016-04-28 课时:44分钟

Protein synthesis: mRNA surveillance by the ribosome

Rachel Green (Johns Hopkins U., HHMI) 2: Protein synthesis: mRNA surveillance by the ribosome

Talk Overview:
In her first talk, Green provides a detailed look at protein synthesis, or translation. Translation is the process by which nucleotides, the “language” of DNA and RNA, are translated into amino acids, the “language” of proteins. Green begins by describing the components needed for translation; mRNA, tRNA, ribosomes, and the initiation, elongation, and termination factors. She then explains the roles of these players in ensuring accuracy during the initiation, elongation, termination and recycling steps of the translation process. By comparing translation in bacteria and eukaryotes, Green explains that it is possible to determine which components and steps are highly conserved and predate the divergence of different kingdoms on the tree of life, and which are more recent adaptations.
Green’s second talk focuses on work from her lab investigating how ribosomes detect defective mRNAs and trigger events leading to the degradation of the bad RNA and the incompletely translated protein product and to the recycling of the ribosome components. Working in yeast and using a number of biochemical and genetic techniques, Green’s lab showed that the protein Dom34 is critical for facilitating ribosome release from the short mRNAs that result from mRNA cleavage. Experiments showed that Dom34-mediated rescue of ribosomes from short mRNAs is an essential process for cell survival in higher eukaryotes.

Speaker Biography:
Rachel Green received her BS in chemistry from the University of Michigan. She then moved to Harvard to pursue her PhD in the lab of Jack Szostak where she worked on designing catalytic RNA molecules and investigating their implications for the evolution of life. As a post-doctoral fellow at the University of California, Santa Cruz, Green began to study how the ribosome translates mRNA to protein with such accuracy.

Currently, Green is a Professor of Molecular Biology and Genetics at the Johns Hopkins School of Medicine and an Investigator of the Howard Hughes Medical Institute. Research in her lab continues to focus on the ribosome and factors involved in the fidelity of eukaryotic and prokaryotic translation.

Green is the recipient of a Johns Hopkins University School of Medicine Graduate Teaching Award as well as the recipient for numerous awards for her research. She was elected to the National Academy of Sciences in 2012.

2016-04-28 课时:38分钟

Introducing the Ensight™ Multimode Plate Reader from PerkinElmer

PerkinElmer's Ensight Multimode Plate Reader is the first benchtop system to offer well-imaging alongside label-free and labeled detection technologies - for a whole new perspective on your research. For more information, please visit the Ensight website - http://bit.ly/T4IDPh

2016-06-02 课时:4分钟

Chaperone-assisted protein folding

伴侣如何认识数以百计的不同的非蛋白质?什么是共享共同的特点在非本土的国家?耶鲁大学医学院Art Horwich既追溯历史又从热休克蛋白60和热休克蛋白70家族、其他监护人家庭的调查、应力检测系统、 蛋白质错误折叠和疾病的评论几个方面与您一一分享。

2016-07-26 课时:39分钟

The role of ATP binding and hydrolysis at GroEL

领略过在真核细胞中的伴侣蛋白分子及伴侣辅助蛋白质折叠的你是否想进一步了解什么是ATP?当绑定是必要的,什么时候是水解需要?在此 Art Horwich娓娓道来在这两个工作中都有两种结合:顺式和反式环 ,顺:约束力GroES,激活折叠rxn ;在反式:触发弹出,如果顺式配体;酶水解进步机,顺解门配体进入反式环 。

2016-07-27 课时:18分钟

Assembly-Line Biosynthesis of Polyketide Antibiotics:Part 1

Chaitan Khosla从进化生物学、化学、结构研究装配线polyketid抗生素生物合成,介绍装配线的机制,分析一个模块的SAXS和连续两模块SAXS。

2016-07-28 课时:36分钟

Assembly-Line Biosynthesis of Polyketide Antibiotics:Part2

从装配线酶的工具和特异性研究体内的重构,纯化的蛋白质的装配线重建。讲解核心反应分析、 定向性、下游延伸单位的特异性酶、装配线的扩展单元的特异性、反式互补的高活性酶。

2016-07-28 课时:29分钟