各种细胞表达的protein作为抗原的优劣
抗原的制备涉及表达载体选择、表达菌株的选择,以及蛋白纯化方法的选择,其中表达菌株可以有多种选择。本视频通过对不同的表达系统的优势及其局限性进行了详细的阐述。
Simultaneous quantification of 47 gene expression in FFPE samples by a novel PCR-free approach
基因表达(gene expression)是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子。生物体内的各种功能蛋白质和酶都是同相应的结构基因编码的。差别基因表达(differential gene expression)指细胞分化过程中,奢侈基因按一定顺序表达,表达的基因数约占基因总数的5%~10%。
金颖:Fox3 suppresses NFAT-mediated differentiation to maintain self-renewal of embryonic stem cells
金颖教授为分子发育生物学研究室主任,健康科学中心研究员。金教授介绍了Fox3通过抑制NFAT介导的分化维持了胚胎干细胞的自我更新的机制等前沿发现。
Pluripotency-associated transcription factor Foxd3 is required for maintaining pluripotent cells. However, molecular mechanisms underlying its function are largely unknown.
Here, we report that Foxd3 suppresses differentiation induced by Calcineurin-NFAT signaling to maintain the ESC identity. Mechanistically, Foxd3 interacts with NFAT proteins and recruits co-repressor Tle4, a member of the Tle suppressor family highly expressed in undifferentiated ESCs, to repress NFATc3’s transcriptional activities.
Furthermore, global transcriptome analysis shows that Foxd3 and NFATc3 co-regulate a set of differentiation-associated genes in ESCs. Collectively, our study establishes a molecular and functional link between a pluripotency-associated factor and an important ESC differentiation-inducing pathway.
Immunoblot Analysis Sean Gallagher(UVP,LLC)and Deb Chakravart(proteomic Center)
Immunoblot Analysis Sean Gallagher(UVP,LLC)and Deb Chakravart(proteomic Center)
Photoreceptors and Image processing Part 1A - Jeremy Nathans
本视频由科普中国和生物医学大讲堂出品
Jeremy Nathans (Johns Hopkins) Part 1A: Photoreceptors and Image processing
In this set of lectures, Jeremy Nathans explores the molecular mechanisms within the retina that mediate the first steps in vision. The first lecture focuses on the structure of the light sensing receptors, the intracellular signals that are triggered by light absorption, and the ways in which the retina extracts information from a complex scene. See more at http://www.ibioseminars.org
Photoreceptors and Image processing Part 1B - Jeremy Nathans
本视频由科普中国和生物医学大讲堂出品
Jeremy Nathans (Johns Hopkins) Part 1B: Photoreceptors and Image processing
In this set of lectures, Jeremy Nathans explores the molecular mechanisms within the retina that mediate the first steps in vision. The first lecture focuses on the structure of the light sensing receptors, the intracellular signals that are triggered by light absorption, and the ways in which the retina extracts information from a complex scene. See more at http://www.ibioseminars.org
用CRISpr寻找新肿瘤药 - 陈巍学基因(32)
欢迎来到【陈巍学基因】,我们这个节目,主要是给大家介绍基因组学,和临床分子诊断的最新技术进展。
今天要和大家谈的,是用CRISpr方法,来寻找新的、可能的肿瘤药物。
提出这个方法的,是加拿大Donnelly Centre的Traver Hart。Traver Hart把他的这项研究成果,发表在《Cell》杂志2015年12月3日这一期上。论文的题目是《High-Resolution CRISpr Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities》。我们这期节目,就主要围绕这篇文章来进行讲解。
文章的核心内容,就是:
1.用CRISpr方法,把几种肿瘤细胞系的几乎所有的基因都做一遍敲除,也就是“Knock out”。
2.然后用高通量测序,来看哪些基因被敲除之后,细胞的生长会受到抑制。
3.接下来,在几种肿瘤细胞系之间进行比较,看哪个基因,是对一个特定细胞系的生长,是必需的,而在别的细胞系当中,这个基因是非必需的。那么,这个基因就可能是治疗这种肿瘤的,潜在的、新的治疗靶点
本视频详细介绍了这种全新的方法,和用这个方法找到的一系列潜在的新药化合物的实例。
GE:CRISpr-Cas9基因编辑解决方案
CRISpr-Cas9基因编辑系统是最新开发出的基因编辑手段之一,同时因其“前所未有的高效和令人吃惊的简单易用”等特点,愈发成为科学家竞相追逐的热点。但市面常见的CRISpr-Cas9系统实验步骤多,耗时长,甚至需要保证病毒才能转导细胞,要获得理想的结果十分不易。Dharmacon强大的研发能力还提供在线设计crRNA工具,轻点鼠标即可完成设计,基因编辑一气呵成!
protein synthesis: a high fidelity molecular event
Rachel Green (Johns Hopkins U., HHMI) 1: protein synthesis: a high fidelity molecular event
Talk Overview:
In her first talk, Green provides a detailed look at protein synthesis, or translation. Translation is the process by which nucleotides, the “language” of DNA and RNA, are translated into amino acids, the “language” of proteins. Green begins by describing the components needed for translation; mRNA, tRNA, ribosomes, and the initiation, elongation, and termination factors. She then explains the roles of these players in ensuring accuracy during the initiation, elongation, termination and recycling steps of the translation process. By comparing translation in bacteria and eukaryotes, Green explains that it is possible to determine which components and steps are highly conserved and predate the divergence of different kingdoms on the tree of life, and which are more recent adaptations.
Green’s second talk focuses on work from her lab investigating how ribosomes detect defective mRNAs and trigger events leading to the degradation of the bad RNA and the incompletely translated protein product and to the recycling of the ribosome components. Working in yeast and using a number of biochemical and genetic techniques, Green’s lab showed that the protein Dom34 is critical for facilitating ribosome release from the short mRNAs that result from mRNA cleavage. Experiments showed that Dom34-mediated rescue of ribosomes from short mRNAs is an essential process for cell survival in higher eukaryotes.
Speaker Biography:
Rachel Green received her BS in chemistry from the University of Michigan. She then moved to Harvard to pursue her PhD in the lab of Jack Szostak where she worked on designing catalytic RNA molecules and investigating their implications for the evolution of life. As a post-doctoral fellow at the University of California, Santa Cruz, Green began to study how the ribosome translates mRNA to protein with such accuracy.
Currently, Green is a professor of Molecular Biology and Genetics at the Johns Hopkins School of Medicine and an Investigator of the Howard Hughes Medical Institute. Research in her lab continues to focus on the ribosome and factors involved in the fidelity of eukaryotic and prokaryotic translation.
Green is the recipient of a Johns Hopkins University School of Medicine Graduate Teaching Award as well as the recipient for numerous awards for her research. She was elected to the National Academy of Sciences in 2012.
protein synthesis: mRNA surveillance by the ribosome
Rachel Green (Johns Hopkins U., HHMI) 2: protein synthesis: mRNA surveillance by the ribosome
Talk Overview:
In her first talk, Green provides a detailed look at protein synthesis, or translation. Translation is the process by which nucleotides, the “language” of DNA and RNA, are translated into amino acids, the “language” of proteins. Green begins by describing the components needed for translation; mRNA, tRNA, ribosomes, and the initiation, elongation, and termination factors. She then explains the roles of these players in ensuring accuracy during the initiation, elongation, termination and recycling steps of the translation process. By comparing translation in bacteria and eukaryotes, Green explains that it is possible to determine which components and steps are highly conserved and predate the divergence of different kingdoms on the tree of life, and which are more recent adaptations.
Green’s second talk focuses on work from her lab investigating how ribosomes detect defective mRNAs and trigger events leading to the degradation of the bad RNA and the incompletely translated protein product and to the recycling of the ribosome components. Working in yeast and using a number of biochemical and genetic techniques, Green’s lab showed that the protein Dom34 is critical for facilitating ribosome release from the short mRNAs that result from mRNA cleavage. Experiments showed that Dom34-mediated rescue of ribosomes from short mRNAs is an essential process for cell survival in higher eukaryotes.
Speaker Biography:
Rachel Green received her BS in chemistry from the University of Michigan. She then moved to Harvard to pursue her PhD in the lab of Jack Szostak where she worked on designing catalytic RNA molecules and investigating their implications for the evolution of life. As a post-doctoral fellow at the University of California, Santa Cruz, Green began to study how the ribosome translates mRNA to protein with such accuracy.
Currently, Green is a professor of Molecular Biology and Genetics at the Johns Hopkins School of Medicine and an Investigator of the Howard Hughes Medical Institute. Research in her lab continues to focus on the ribosome and factors involved in the fidelity of eukaryotic and prokaryotic translation.
Green is the recipient of a Johns Hopkins University School of Medicine Graduate Teaching Award as well as the recipient for numerous awards for her research. She was elected to the National Academy of Sciences in 2012.