打开APP

科学家们如何利用人类芯片来改善人类健康?

  1. 毒性
  2. 疾病
  3. 癌症
  4. 芯片
  5. 药物
  6. 靶点

来源:本站原创 2021-07-30 17:41

近年来,随着人类芯片技术研究的不断深入,科学家们在利用芯片技术改善人类健康和疾病研究上取得了很多显著的成绩,本文中,小编就对相关研究成果进行整理!分享给大家!【1】Nat Commun:科学家成功研发肺癌类器官快速药敏检测芯片doi:10.1038/s41467-021-22676-1近日,北京大学人民医院胸外科王俊院士课题组与清华大学刘鹏研究员课题组、北京

近年来,随着人类芯片技术研究的不断深入,科学家们在利用芯片技术改善人类健康和疾病研究上取得了很多显著的成绩,本文中,小编就对相关研究成果进行整理!分享给大家!

图片来源:www.pixabay.com

【1】Nat Commun:科学家成功研发肺癌类器官快速药敏检测芯片

doi:10.1038/s41467-021-22676-1

近日,北京大学人民医院胸外科王俊院士课题组与清华大学刘鹏研究员课题组、北京航空航天大学陈晓芳副教授课题组合作类器官与芯片结合的研究新成果“Patient-derived organoids analyzed on a superhydrophobic microwell array for predicting drug response of lung cancer patients within a week”在国际著名期刊Nature Communications在线发表。该研究通过开展跨领域、面向临床的联合攻关,将微流控芯片与肿瘤类器官这两项前沿技术结合,研发出全新的集成超疏水微孔阵列芯片(InSMAR-chip),显着提高了对肿瘤患者抗癌药物临床疗效预测的效率和时效。

在精准治疗时代,肿瘤体外药敏预测是个体化治疗的重要研究方向。近年来,肿瘤类器官技术取得重要进展,在多个癌种中均开发出预测患者对于药物抗癌疗效的体外模型。但在肺癌领域,肿瘤类器官模型的构建和应用受限于效率和时耗等问题,较其它癌种更为困难。

研究团队改进了肿瘤样本的处理方法,采用机械处理方法从手术切除和活检的新鲜肿瘤组织中培养出大量肺癌类器官(lung cancer organoids, LCOs),证实LCOs保留了亲代肿瘤的组织学与遗传学特征,能在长期体外培养和传代后保持稳定,具有无限传代扩增的潜力。团队采用全新的集成超疏水微孔阵列芯片(InSMAR-chip),将其用于LCOs的高通量三维培养和分析,由于芯片上的微孔体积为纳升量级,大幅降低样本消耗量和培养时耗,一周时间内即可完成药物反应的测试,并获得药敏结果。后续实验充分证明,这些药物测试结果与患者来源的异种移植物、肿瘤的基因突变和临床结果高度吻合。

【2】Biomicrofluidics:肺器官微芯片模型帮助研究免疫反应

doi:10.1063/5.0038924

根据美国国立卫生研究院(National Institutes of Health)的数据,呼吸道病毒是人类最常见的疾病和死亡原因,COVID-19大流行格外凸显了这一事实。尽管有可能引起严重的疾病,但仍有超过70%的病毒感染并无症状。动物模型已被广泛用于了解这些病毒如何感染宿主以及宿主如何预防感染和疾病发作。但是,鉴于物种和遗传学方面的差异,基于动物模型的数据并不总是适用于人类。

为了解决这一问题,来自Ege大学和诺丁汉大学的研究人员回顾了一系列肺上芯片技术,这些技术代表了肺组织的重要特性,并能够概括各种病理学的基本方面。作者Ozlem Yesil-Celiktas说:“肺芯片平台能够在体外重建人肺的多细胞结构,理化微环境以及组织与组织的界面。”研究人员回顾了各种最先进的芯片肺及其在检查,诊断和治疗人类病毒(包括引起COVID-19的冠状病毒)中的应用。不同的平台专注于肺功能的不同部分,例如小型呼吸道和肺泡碎组织。通过开发生理相关的肺上芯片模型而积累的知识和专业知识为使用这些模型研究几种人类呼吸道病毒与器官相关环境中的呼吸道上皮和肺泡之间的相互作用铺平了道路。

【3】Blood Adv:利用一种新型人体器官芯片揭示卵巢癌借助血小板的力量发生癌症转移的分子机制

doi:10.1182/bloodadvances.2020001632

近日,一篇发表在国际杂志Blood Advances上的研究报告中,来自德州农工大学等机构的科学家们通过研究揭示了卵巢癌肿瘤、血管和血小板之间的相互作用,他们发现,卵巢癌或会打破血管屏障以便其能与诸如血小板等血细胞进行交流沟通,当这些肿瘤与血小板沟通时,其就会开始发生癌症转移或者扩散到机体其它位点上去。

目前,研究人员认为血小板或是卵巢癌转移的诱发剂,但他们并不清楚到底是什么样的机制能将血小板引入到肿瘤细胞中,相比在动物模型中非常艰难地研究其中的奥秘,这项研究中,研究人员提出了一种新型解决方案,即人体器官芯片(organs-on-a-chip)研究。人体器官芯片是一种USB驱动器大小的微粒体医学设备,研究人员在OvCa芯片上进行了设计,从而就能使其更加容易地观察肿瘤和血小板之间的相互作用过程。

研究者Jain解释道,一种特殊的微环境能促进卵巢肿瘤细胞与血管在一起进行共培养,随后肿瘤就能与血细胞之间发生相互作用,随后研究人员就能进一步研究药物是如何影响其二者之间相互作用的。在OvCa芯片上观察肿瘤与血管之间的相互作用就能让研究人员获得意想不到的结果,他们指出,肿瘤细胞会系统性地分解内皮细胞,内皮细胞是排列在血管内壁阻断外部环境与血细胞之间相互作用的天然屏障,一旦该屏障被打破,诸如血小板等血细胞就会进入到肿瘤微环境中并被癌细胞招募来促进癌症的转移。

图片来源:Photo by Yong Zeng

【4】Science子刊:新型芯片实验室血液测试有望更早地发现癌症

doi:10.1126/scitranslmed.aaz2878

血液或其他生物流体的液体活检有望检测癌症和监测治疗反应。纵向癌症监测对精准医学的临床实施至关重要。越来越多的证据表明胞外囊泡(extracellular vesicle, EV)在肿瘤进展和转移中具有重要功能,包括通过运输基质金属蛋白酶(MMP)进行基质重塑。然而,EV的临床相关性在很大程度上仍未确定,部分原因在于针对EV的分析存在挑战。现有的分析技术大多几种在表征EV中的分子成分。

在一项新的研究中,来自美国堪萨斯大学的研究人员报道了一种纳米工程芯片实验室系统,它能够对肿瘤相关EV进行整合性的功能和分子表型分析。他们开发出一种通用的高分辨率胶体喷墨打印方法,从而允许稳健地和可扩展地制造三维纳米图案聚二甲基硅氧烷/玻璃微流体芯片,用于分析血浆中的EV。相关研究结果发表在2020年6月10日的Science Translational Medicine期刊上,论文标题为“Molecular and functional extracellular vesicle analysis using nanopatterned microchips monitors tumor progression and metastasis”。这种微流体芯片可捕获表达不同表面标志物的EV,并测量MMP14在EV表面上的表达和活性。

【5】Nature子刊:一种MCFA实验室芯片可在20分钟内给出测试结果

doi:10.1038/s41378-019-0108-8

目前,即使在人们表现出症状的情况下,在实验室中进行疾病诊断也要花费数小时甚至数天的时间。到这时,这种疾病可能已经扩散了。在一项新的研究中,来自美国辛辛那提大学的研究人员构建出一种微型便携式实验室芯片,它可插入到智能手机中,通过他们开发的一种自定义应用程序将这种实验室芯片自动连接到医生办公室。相关研究结果于2020年1月27日发表在Microsystems & Nanoengineering期刊上,论文标题为“A new microchannel capillary flow assay (MCFA) platform with lyophilized chemiluminescence reagents for a smartphone-based POCT detecting malaria”。

在测试时,将患者的血液或唾液等样本装载到这种一次性使用的实验室芯片中,然后将它插入一个黑盒的插槽中以测试样本。它自动地将测试结果即时地传送给医生。这种实验室芯片,称为微通道毛细管流动测定(microchannel capillary flow assay, MCFA)实验室芯片,利用自然的毛细管作用让装载的样本沿着两个微小的通道(即微通道)流动。一个微通道将样本与冻干的检测抗体试剂混合。另一个微通道含有冻干的化学发光试剂。当流入这两个通道的样本在三个硅光电倍增管(PMT)上汇集在一起时,就可读出测量结果。

在MCFA实验室芯片中,这两个微通道经过功能设计后具有足够亲水性的表面,一旦装载含有靶生物标志物的样本(比如血清),这种亲水性表面可将样本引流向冻干的试剂并溶解它们。

图片来源:www.pixabay.com

【6】IEEE Open J Eng Med:新型大脑芯片有助于癌症精准医疗

doi:10.1109/OJEMB.2019.2962801

来自休斯敦大学的Akay生物医学实验室的研究小组报告说,他们改进了先前在实验室中开发的微流脑癌芯片。新型芯片允许多次同时给药,并对胶质母细胞瘤(GBM)患者(最常见的恶性脑肿瘤)进行大规模的药物反应平行测试。“新芯片产生肿瘤球体或簇,并提供对这些GBM肿瘤细胞对各种浓度和药物组合的反应的大规模评估。该平台可以优化使用来自GBM患者的稀有肿瘤样品,以提供有价值的有关肿瘤生长和对药物疗法的反应的见解”,生物医学工程学教授兼系主任John S. Dunn说道。该论文发表在IEEE医药与生物学工程学会的医学与生物学工程学开放期刊的创刊号上。

快速评估一种癌症药物有效性的主流方法是探究其相比典型的癌症治疗方案是否有显著改善,在典型的癌症方案中,先给予化疗药物,然后进行几个月的测试,如果第一种药物无效,则患者应换用另一种药物。新设备可以在短短两周内确定最佳药物组合。Akay的团队对肿瘤活检中取得的切片进行培养并将其放入芯片中。然后,他们将化学疗法药物添加到芯片的微阀中,以探究可以杀死最多肿瘤细胞的最佳药物组合和特定比例。

【7】Science子刊:肝芯片可用于鉴定药物的物种特异性肝毒性

doi:10.1126/scitranslmed.aax5516

在美国威斯生物启发工程研究所开发的众多微工程器官芯片(Organ Chip)模型中,肝芯片引起了许多行业的特别关注,这是因为对复杂生化相互作用的实时分析可以大大增强在药物、食品和其他消费产品的开发中普遍存在的肝毒性测试。作为一家衍生自威斯生物启发工程研究所的致力于将器官芯片技术商业化的公司,Emulate公司(Emulate Inc.)近期宣布一项新研究表明它的肝脏芯片模型重现了药物化合物在人类、狗和大鼠肝脏中诱导的物种特异性毒性反应。这些数据表明这种肝芯片能够潜在地与动物模型一起用于临床前测试中,以改善对人类的安全性预测,最终目标就是获得更好的临床试验结果和更安全的药物。相关研究结果近期发表在Science Translational Medicine期刊上,论文标题为“Reproducing human and cross-species drug toxicities using Liver-Chips”。

论文共同通讯作者、Emulate公司总裁兼首席科学官Geraldine A. Hamilton博士说,“这是通过利用威斯生物启发工程研究所独特的转化模型而努力改善药物发现和开发过程的重要里程碑,这种转化模型让我们能够在开发早期从技术和商业角度评估器官芯片的前景。我们很高兴看到我们的客户使用这种肝芯片将会取得的进展,我们非常感谢有机会影响药物的发现和开发过程,并改变患者的生活。”

在这项新的研究中,来自阿斯利康公司、Emulate公司、杨森研发公司(Janssen Research & Development, LLC)和威斯生物启发工程研究所的研究人员设计出一种具有物种特异性的肝细胞的肝芯片,它具有在大鼠、狗和人类的肝脏中发现的多达四种不同的细胞类型,因而近似于肝脏的最小功能单位。他们首先将肝芯片暴露于FIAU,即一种已知会引起人类肝毒性的化合物)中,并观察到它在狗芯片和大鼠芯片中的毒性不同,但远低于它在人肝芯片中的毒性,这就重现了在先前的动物研究中观察到的结果。当测试这种肝芯片对杨森研发公司提供的不同候选药物分子作出的反应时,他们发现这些候选药物对人类和动物肝细胞功能的影响有所不同,从而重现了在体内的肝细胞中观察到的结果。他们还能够测试不同药物的作用机制,并获得传统的基于细胞的系统或动物模型无法获得的新见解。

【8】Nature子刊:开发出可在几分钟内检测基因突变的CRISPR芯片

doi:10.1038/s41551-019-0371-x

在一项新的研究中,来自美国加州大学伯克利分校和克莱蒙特学院联盟凯克研究所的研究人员将CRISPR与用石墨烯制成的电子晶体管结合在一起,构建出一种可在几分钟内检测出特定基因突变的新型手持设备。这种称为CRISPR-Chip(CRISPR芯片)的设备可用于快速诊断遗传疾病或评估基因编辑技术的准确性。他们使用这种设备来鉴定来自杜兴氏肌营养不良(DMD)患者的DNA样品中的基因突变。相关研究结果发表在Nature Biomedical Engineering期刊上,论文标题为“Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor”。

研究者Kiana Aran说道,“我们开发出首个利用CRISPR在基因组中搜索潜在突变的晶体管。仅需将纯化的DNA样品放在这种芯片上,让CRISPR进行这种搜索,这种石墨烯晶体管可在几分钟内报告搜索结果。”医生和遗传学家如今可对DNA进行测序,以确定导致一系列性状和疾病的基因突变,而且像23andMe和AncestryDNA这样的公司甚至可以向好奇的消费者提供这类测试。

但是与大多数形式的基因检测---包括近期开发的基于CRISPR的诊断技术---不同的是, CRISPR-Chip使用纳米电子技术来检测DNA样本中的基因突变,而无需首先通过一种称为聚合酶链式反应(PCR)的时间和设备密集型过程来对感兴趣的DNA片段进行数百万次“扩增”或着说复制。这意味着它可能用于在医生办公室或野外工作环境中进行基因检测,而无需将样品送到实验室。

图片来源:www.pixabay.com

【9】Nat Biomed Eng:器官芯片技术有助于体外研究人类基因组

doi:10.1038/s41551-019-0397-0

人类微生物组,即生活在体内和体内的大量微生物,深刻地影响着人类的健康和疾病。特别是人体肠道菌群,其中含有最密集的微生物,不仅可以分解营养物质,释放对我们生存至关重要的分子,而且也是许多疾病发展的关键因素,包括感染,炎症性肠病,癌症,代谢性疾病,自身免疫性疾病和神经精神疾病。我们对人体 - 微生物组相互作用的了解大多基于使用基因组或宏基因组分析的粪便样品中所含的疾病状态和细菌DNA之间的相关性研究。这是因为研究微生物组与人体外肠组织之间的直接相互作用是一项艰巨的挑战,这在很大程度上是因为即使共生细菌在培养皿上生长的一天内也会过度生长并杀死人体细胞。肠道中的许多共生微生物也是厌氧的,因此它们需要非常低的氧气条件才能生长,这会损害人体细胞。

哈佛大学Wyss生物启发工程研究所的一个研究小组由该研究所的创始主任唐纳德·英伯德领导,他利用“器官芯片”(器官芯片)微流体培养技术开发出了解决这一问题的方案。他的团队现在能够在人体肠道芯片中培养一种稳定的复杂人体微生物组,与人血管上皮细胞直接接触至少5天,其中建立氧气梯度,为内皮和上皮提供高水平,同时保持缺氧状态。共生细菌栖息的肠腔内的病症。它们的“厌氧肠片”在数天内稳定地保持了与人类粪便相似的微生物多样性,并且是由人肠组织形成的保护性生理屏障。该研究发表在Nature Biomedical Engineering杂志上。

【10】Cell Stem Cell:利用干细胞首次制备“血脑屏障”芯片“

doi:10.1016/j.stem.2019.05.011

内格夫本古里安大学(BGU)和洛杉矶Cedars-Sinai医学中心的研究人员首次创造了一种含有干细胞的人类血脑屏障(BBB)芯片,用于开发个性化医疗和研究脑部疾病的新技术。用于开发个性化医疗和研究脑部疾病的新技术。这项新研究发表在Cell Stem Cell杂志上。

血脑屏障阻止血液中的毒素和其他外来物质进入脑组织并造成损害。但它也可以防止治疗药物到达大脑。神经系统疾病如多发性硬化症,癫痫,阿尔茨海默病和亨廷顿氏病,共同影响全世界数百万人,与血脑屏障缺陷有关。在这项研究中,研究人员将从个体收集的血细胞重编程成为干细胞(称为诱导多能干细胞),可以产生任何类型的细胞。之后,作者将细胞置于微流体BBB器官芯片上,其尺寸大约为AA电池,其中包含细小的空心通道,内衬有数万个活细胞和组织。重建了功能性的BBB芯片具有类似于人体真实的功能特性,包括阻止某些药物的进入等。(生物谷Bioon.com)

生物谷更多精彩盘点!敬请期待!

版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

87%用户都在用生物谷APP 随时阅读、评论、分享交流 请扫描二维码下载->