首页 » 标签 :“不对称”(共找到约32条相关新闻)
  • Nat Cell Biol:新研究阐释不对称细胞分裂与衰老之间的关系

    2019年10月2日 讯 /生物谷BIOON/ --最近,来自Seville大学(CABIMER)的研究人员发现了一种新的,可以用于解释解发生不对称细胞分裂的细胞的过早衰老的机制。这对于研究并预测与衰老相关的疾病(例如癌症和神经退行性疾病)的发展非常有用。该研究发表在最新一期的《Nature Cell Biology》杂志上。 在不对称分裂过程中,所得细胞具有不同的形态和大小,不同的细胞

  • Nature:不对称溶酶体遗传预测造血干细胞的活化

    2019年9月10日讯 /生物谷BIOON /——造血干细胞在整个生命周期中自我更新,并可以分化为所有的血液谱系,并能在移植后修复受损的血液系统。不对称细胞分裂以前被怀疑是造血干细胞命运的调节因子,但它的存在尚未被直接证实。在不对称细胞分裂中,未来子细胞的不对称命运是由与有丝分裂相关的机制所决定的。这可以通过细胞外部生态位信号的非对称遗传来调节,例如,定向的分区平面,或者细胞内部命运决定因素的非对

  • 研究揭示胚胎左右不对称发育过程中细胞周期调控纤毛形成机制

     动物胚胎如何由一个均一的卵裂球发育为具有头尾、背腹和左右等不对称特征的胚胎,是发育生物学中一个重要的研究领域。为纪念创刊125周年,Science 杂志于2005年7月提出了125个重要的科学问题。上述胚胎不对称性建立的机制,即属于其中的科学问题之一。左右不对称(left-right asymmetry)在自然界中很常见。例如,招潮蟹左右分别有一个大的和一个小的蟹钳,而比目鱼总是身体一

  • Science:发现蛋白Myo1D足以诱导身体不对称

    2018年11月27日/生物谷BIOON/---不对称性在各个尺度的生物学中起着重要作用:考虑一下DNA螺旋、人类心脏位于左侧的事实和我们倾向于使用我们的左手或右手。但这些不对称性是如何产生的,它们彼此之间是否存在关联?在一项新的研究中,来自法国和美国的研究人员展示了单个蛋白如何诱导另一个分子发生螺旋运动。通过多米诺骨牌效应,这会导致细胞、器官甚至整个身体发生卷曲,从而触发偏侧行为。相关研究结果发

  • Nature:不对称的氨基酸α-芳基化修饰是开发新药物的起点

     氨基酸是羧酸碳原子上的氢原子被氨基取代后的化合物,氨基酸分子中含有氨基和羧基两种官能团。与羟基酸类似,氨基酸可按照氨基连在碳链上的不同位置而分为α-,β-,γ-...w-氨基酸,但经蛋白质水解后得到的氨基酸都是α-氨基酸,而且仅有二十几种,是蛋白的构成单元(building block)。对氨基酸进行化学修饰允许科学家们能够开发新的分子,这就为开发抗生素等新的医学药物提供起点。在一项新

  • Nature:不对称的氨基酸α-芳基化修饰是开发新药物的起点

    2018年10月17日/生物谷BIOON/---氨基酸是蛋白的构成单元(building block)。对氨基酸进行化学修饰允许科学家们能够开发新的分子,这就为开发抗生素等新的医学药物提供起点。在一项新的研究中,来自英国布里斯托大学化学学院的研究人员如今开发出一种新的修饰氨基酸的方法:将一个碳原子环连接到氨基酸分子的正中心。相关研究结果发表在2018年10月4日的Nature期刊上,论文标题为“A

  • 研究揭示跨期决策的神经网络具有获得-损失不对称

      日常生活中,诸如教育、投资和储蓄等决策行为,都需要在不同时间点上的结果之间进行权衡,即跨期决策。人们通常会根据结果的延迟时间长短,对结果进行“折扣”。但是,人们对未来获得(如年终奖)和未来损失(如贷款利息)的时间折扣程度并不一致:前者通常大于后者,这就是跨期决策中的获得-损失不对称效应。该效应提示,跨期决策的获得和损失可能涉及不同的神经机制。中国科学院心理研究所行为科学重点

  • 研究发现转录中介体调控干细胞不对称分裂和根形态建成的机理

     多细胞生物的器官发生和生长发育依赖于干细胞的不对称分裂。与动物干细胞类似,植物干细胞的不对称分裂和特性维持通常由少数几个核心转录因子控制。因此,核心转录因子如何与RNA聚合酶II通用转录机器“密切沟通”从而实现对靶标基因时空特异性表达的精确控制是发育生物学领域的一个重大问题。在模式植物拟南芥中,干细胞组织中心及其周围的干细胞共同构成了根尖干细胞微环境。其中的皮层/内皮层干细胞通过不对称

  • Science:重磅!揭示染色体不对称分配到卵子中之谜

    图片来自University of Pennsylvania。2017年11月5日/生物谷BIOON/---你的每个细胞含有23对染色体,就每对染色体而言的一条染色体遗传自你的父亲,另一条染色体遗传自你的母亲。理论上,当你产生配子(即生殖细胞)---精子或卵子时,每条染色体具有50:50的机会分配到配子中。但是实际情形并非如此。科学家们已观察到染色体能够“欺骗”,从而让它们不对称地进入到生殖细胞中

  • 研究发现DNA甲基化调控胚胎左右不对称发育

     DNA甲基化是常见的表观遗传修饰形式,通常发生在CpG位点中的胞嘧啶,由DNA甲基转移酶所催化,将胞嘧啶(C)转变为5-甲基胞嘧啶(5mC)。DNA甲基化在基因转录调控、染色体结构稳定性、基因印记、X染色体失活等方面发挥作用。脊椎动物早期胚胎全基因组DNA甲基化图谱研究提示DNA甲基化可能在胚胎发育中发挥重要作用,然而关于DNA甲基化修饰在胚胎早期发育中的功能研究尚不全面。脊椎动物体轴