发现第二种初级视觉皮层
2019年1月12日/生物谷BIOON/---视觉系统很可能是大脑中最容易理解的部分。在过去的75年里,神经科学家们已详细地介绍了进入你眼睛的光波如何让你识别你祖母的脸部、跟踪飞行中的鹰,或者阅读这句话。但是,在一项新的研究中,来自美国加州大学旧金山分校的研究人员对视觉科学的一个基本方面提出了质疑,指出即便是得到最好研究的大脑部分仍然会有很多惊喜。相关研究结果发表在2019年1月4日的Scienc
Nat Commun:高分辨率成像技术首次揭示活跃大脑的皮层结构
2019年1月6日 讯 /生物谷BIOON/ --正如医生们使用超声波检查,CT和MRI扫描身体,天文学家利用太空望远镜,自适应光学器件和不同波长的光线进一步观察宇宙,神经科学家们也在寻求新的方法来观察大脑内部的结构。最近出现的三光子显微镜让他们比以往更深入地了解脑细胞。现在,基于对该技术的实质性改进,麻省理工学院的科学家们已经开展了第一项研究:通过每个视觉皮层,特别是下面神秘的“亚平面”结构,观
研究发现调控皮层中间神经元发育成熟的新机制
12月7日,中国科学院生物物理研究所王晓群研究组在国际脑科学杂志CerebralCortex上在线发表了题为Early Excitatory Activity-dependent Maturation of Somatostatin Interneurons in Cortical Layer 2/3 of Mice 的研究成果,该工作系统阐明了运动皮层M2中Somatostatin(SST)阳性
研究解析大脑皮层神经元信息的读码机制
9月20日,《神经元》期刊在线发表了中国科学院神经科学研究所、脑科学与智能技术卓越创新中心、中科院灵长类神经生物学重点实验室空间感知课题组的题为《通过结合决策信号的测量与微电流刺激的干扰两种方法来解析大脑神经元信息的读码机制》的研究论文。在该研究工作中,科研人员在清醒猕猴执行空间运动方向辨别任务的同时,记录了大脑皮层中上颞叶内侧皮层、中颞叶皮层和腹顶内皮层三个脑区的神经元反应,通过数学方法分离了这
为何不喝咖啡就会感觉到头痛?
2018年8月31日 讯 /生物谷BIOON/ --咖啡是我们最喜欢的一种“药物”,如果我们错过了其“治疗疾病”的机会,从很多方面来讲都是一件非常令人头痛的问题;同时咖啡也是一种刺激物,其能够快速进入大脑中,阻断负责让大脑迟钝的受体发挥作用,通过阻断大脑的迟钝,我们就会感觉到一种活力、专注以及微妙的欣快感,这种感觉就能够提高我们完成某些重点任何的能力,比如开车、或在整个讲座过程中保持清醒。图片来源
Neuroimage:大麻使用者大脑皮层存在过度激活
2018年9月7日 讯 /生物谷BIOON/ --德克萨斯大学达拉斯分校BrainHealth中心最近的研究表明,与非使用者相比,大麻使用者在大脑休息状态下的大脑皮层活跃水平相对较高。该研究的主要作者,脑保健中心的研究科学家Shikha Prashad博士说,由此产生的“吵闹的大脑”可能会损害大脑活动并破坏认知过程。“这项研究是第一个描述全球皮层活跃性以及大麻使用者休息期间的半球间和半球内功能连接
当你感觉不健康时 该如何开始锻炼?
2018年7月6日 讯 /生物谷BIOON/ --如果你的体重超标或很长时间没有运动的话,你可以能会面临很多挑战,当然了,你仍然可以保持健康,并且获得锻炼给你带来的所有好处。图片来源:medicalxpress.com最简单的方法就是开始走路,因为这种方式风险和影响相对较低,你只需要一双好的走路的鞋子即可;从每天安排一次散步开始,然后找机会采取一些额外的锻炼措施,比如午餐的时候去逛街或者在原地走路
初级视觉皮层功能结构研究获进展
5月14日,中国科学院神经科学研究所、脑科学与智能技术卓越创新中心、神经科学国家重点实验室蒲慕明研究组在《美国国家科学院院刊》杂志在线发表了题为《初级视觉皮层中内部连接及反馈连接的功能结构》的研究文章。这项工作建立了一套旨在研究脑区间连接的双色钙成像方法,并利用这种方法对树鼩中投射至初级视觉皮层(V1)的两条输入通路的功能结构进行了探讨。大脑皮层是由负责不同功能的很多区域所组成的。即使在单个区域内
为何吸烟、吃巧克力让我们感觉如此快乐?快乐如何影响大脑健康?
2018年5月23日 讯 /生物谷BIOON/ --每天我们都会在追求快乐的过程中做一系列选择,我们会做一些让我们感觉良好的事情,同时我们也会完成一份特定的工作,不管其是否有回报,这些经历有助于塑造我们对待生活的看法,并且定义我们的个性。因此,我们管理或维持我们追寻快乐的能力问题或许归因于许多神经性精神障碍,比如成瘾症和抑郁症等。当我们经历快乐时大脑会发生什么变化?机体的快乐是由大脑多个部位所释放
研究发现双侧枕顶联合皮质负责视听感觉整合中多模块信息输入的匹配过程
神经软体征,包含运动协调性、感觉整合等多种功能。以往研究证实,它是精神分裂症谱系障碍群体敏感、特异、可靠和有效的生物学标记。最近的神经影像研究表明,精神分裂症患者的神经软体征有对应的神经基础。大多数研究集中在运动协调性体征的神经基础上,而探究其他神经软体征的神经基础也是同样重要的。感觉整合是神经软体征之一,整合从不同感觉模块来的外部信号,对外部世界的认知表征具有重要作用。然而,很少有研究在健康和临