打开APP

Cell Death and Disease:研究揭示异染色质松散因子“开锁-微信”模式

 10月12日,中国科学院广州生物医药与健康研究院刘兴国课题组以Gadd45a opens up the promoters regions of miR-295 facilitating pluripotency induction为题的研究论文,在线发表在Cell Death and Disease上。研究人员发现在体细胞重编程为诱导多能干细胞过程中,异染色质松散因子Gadd45a特

2017-10-19

PNAS:研究发现新蛋白复合体控制异染色质化介导的RNA加工机制

 近日,中国科学院上海植物逆境生物学研究中心朱健康研究组和段成国研究组,以A protein complex regulates RNA processing of intronic heterochromatin-containing genes in Arabidopsis为题的研究论文,在线发表在PNAS上。研究利用生物化学手段鉴定到一个染色质调控因子ASI1的互作蛋白-AIPP1

2017-10-17

科学家实现自由行为斑马鱼全脑功能光学成像

近日,中国科学院脑科学与智能技术卓越创新中心王凯研究组(神经科学研究所)与温泉研究组(中国科学技术大学微尺度国家实验室)合作完成的论文《自由行为下幼年斑马鱼快速全脑神经活动成像》发表在eLife上。该研究发展了一种新型三维在体成像技术——扩增视场光场显微技术(eXtended field-of-view Light Field Microscopy, XLFM),可以对斑马鱼幼体的全脑神经元进行高

2017-10-13

PNAS:微生物组成像技术揭示肠道微生物的复杂性

2017年10月11日讯 /生物谷BIOON/ --很长时间以来我们已经知道,破坏人体的肠道微生物问题啊会导致许多疾病的发生,例如肥胖以及癌症等。然而,我们并不清楚肠道内一千多种微生物的空间排布特征,这些特征直接影响了微生物与宿主以及其它种类的微生物的相互作用。在最近的一项研究中,来自Forsyth研究所海洋生物学实验室的科学家们以及来自华盛顿大学圣路易斯分校的研究者们利用无菌小鼠构建出了一个简单

2017-10-12

国家重点研发计划“大视场生物成像分析仪”项目启动

 近日,国家重点研发计划“重大科学仪器设备开发”重点专项“大视场生物成像分析仪”项目启动会在中科院南京天文仪器有限公司举行,项目专家组成员、主管部门负责人、项目骨干等20余家单位的近50余人出席了本次会议。项目责任专家、中科院沈阳科学仪器研制中心有限公司董事长雷震霖代表科技部高技术研究发展中心介绍了国家重点研发计划“重大科学仪器设备开发”重点专项基本情况、项目部署情况,对项目过程管理、组

2017-10-10

揭示细胞质中的染色质触发炎症机制

图片来自Nature, doi:10.1038/nature24050。2017年10月5日/生物谷BIOON/---应激(stress)---广义上的定义---能够对人体产生极其有害的影响。即使单个细胞也有自己的处理环境应激(如太阳紫外线辐射或细菌)的方法。在一项新的研究中,来自美国、中国和英国的研究人员发现在癌症和老化(aging)的情形下,对被称作衰老(senescence)的应激作出的反应

2017-10-05

科学家开发出可有效预测癌症恶性程度的新型非侵入性成像技术!

2017年10月9日 讯 /生物谷BIOON/ --近日,来自大阪大学的研究人员通过研究发现,一种不用标记的多光子显微镜检测技术(NL-MPM)或能对癌症进行定量成像检测,而且该技术具有一定的安全性、不需要对组织进行切除、固定或染色,相关研究刊登于国际杂志Scientific Reports上,研究人员希望这种新型技术能够简化并且降低科学家们对癌症的诊断时间。图片来源:Osaka Universi

2017-10-08

2017年诺奖预测:脑成像重磅级研究解读

10月诺贝尔奖月马上到来,随着颁奖时间越来越近,很多科学家们都开始预测2017年的诺奖获得者;从2002年开始,汤森路透社每年都会进行诺贝尔奖的预测,近期汤森路透公布了2017年的预测名单,其中共有四位科学家入选生理学或医学领域,包括来自美国匹兹堡大学医学院的特聘教授张远(发现了人类疱疹病毒)、威尔康乃尔医学院癌症生物医学教授Lewis C. Cantley(发现了磷酸肌醇-3-激酶(PI3K)信

2017-09-27

小白变大咖显微成像修炼营召集

欢迎加入徕卡显微成像修炼阵营!现在成为徕卡会员, 赢取为您精心定制的科学大礼包!详情请点击

2017-09-25

科学家解析减数分裂偶线期染色体形态建成新机制

 在减数分裂偶线期,染色体会蜷缩成一团,让所有染色体端粒聚集在核膜内侧,形成特定的端粒花束结构。这种染色体的形态建成,作为一个高度保守的减数分裂事件,在同源染色体配对和随后减数分裂进程中发挥着非常重要的作用。近年来,在酵母和哺乳动物中相继分离了一些参与端粒花束形成的重要因子, 但这些因子在不同物种间很不保守。目前,植物中偶线期染色体形态建成的分子机制尚不清楚。中国科学院遗传与发育生物学研

2017-09-28