打开APP

研究解析大脑皮层神经元信息的读码机制

9月20日,《神经元》期刊在线发表了中国科学院神经科学研究所、脑科学与智能技术卓越创新中心、中科院灵长类神经生物学重点实验室空间感知课题组的题为《通过结合决策信号的测量与微电流刺激的干扰两种方法来解析大脑神经元信息的读码机制》的研究论文。在该研究工作中,科研人员在清醒猕猴执行空间运动方向辨别任务的同时,记录了大脑皮层中上颞叶内侧皮层、中颞叶皮层和腹顶内皮层三个脑区的神经元反应,通过数学方法分离了这

2018-09-28

Nat Neurosci:重新同步神经元足以缓解精神分裂症

2018年9月18日讯 /生物谷BIOON /——精神分裂症是一种使人衰退的严重神经发育障碍。找到与精神分裂症相关的电神经功能障碍和特殊的行为特点之间的因果关系是揭示这种疾病机制的关键所在。而近日来自瑞士日内瓦大学的研究人员在这方面取得了令人兴奋的进展,他们发现了导致神经网络去同步化的一种分子机制,并成功地修复了成年动物模型的这种组织缺陷,从而抑制了与精神分裂症相关的异常行为,相关研究成果于近日发

2018-09-18

Sci Trans Med:呼吸道神经元与哮喘严重之间的关系

2018年9月7日 讯 /生物谷BIOON/ --一项新的研究表明气道神经重塑是哮喘患者敏感性和气道收缩增加的关键因素。该研究发表在今天的《Science Translational Medicine》杂志上。这些结果为哮喘发展过程中一个鲜为人知的因素提供了新的见解,这一疾病影响了全球约2.35亿人。该研究首次证明炎症细胞可以改变肺部的神经结构,从而引发疾病。气道神经感知环境中的吸入颗粒,例如花粉

2018-09-07

聚焦神经元重要研究 解读大脑奥秘!

我们都知道,神经元是大脑中的重要神经细胞,也是构成神经系统结构和功能的基本单位;本文中,小编整理了多篇研究成果,来共同解读科学家们如何深入研究神经元,探索大脑的奥秘,分享给大家!【1】Science:重磅!发现重写创伤记忆的神经元doi:10.1126/science.aas9875   doi:10.1126/science.aau0035对创伤经历的回忆会导致精神健康问题,

2018-08-26

Nat Biotechnol:科学家成功观察到大脑神经元的“交流”机制 有望阐明多种神经性疾病的发病机制

2018年9月5日 讯 /生物谷BIOON/ --近日,一项刊登在国际杂志Nature Biotechnology上的研究报告中,来自美国弗吉尼亚健康系统大学等机构的研究人员通过研究开发了一种能够观看大脑神经元“交流”的新方法,这种新技术或能帮助研究人员解开诱发多种大脑和神经系统疾病的原因,比如阿尔兹海默病、精神分裂症和抑郁症等,相关研究结果也能帮助研究人员开发新型疗法来治疗多种神经变性疾病。图片

2018-09-04

多篇研究表明利用三维大脑样微环境可高效地促进治疗神经元产生

2018年8月30日/生物谷BIOON/---人类大脑由高度复杂和广泛的细胞和神经元网络组成,然而人们对发育中的大脑的现有科学理解是相对有限的。作为一个不断发展的领域,神经工程(neuroengineering)采用先进的技术来操纵神经元。这个学科的科学家们能够开发中枢神经系统和外周神经系统的疾病模型,以便理解神经系统疾病,并为神经组织工程构建出下一代的生物材料。直接重编程成纤维细胞(一种体细胞)

2018-08-30

Cell:科学家阐明大脑中神经元新型作用机制 有望开发罕见免疫性疾病的新型疗法

2018年9月3日 讯 /生物谷BIOON/ --拉斯穆森脑炎(Rasmussen's encephalitis)是一种罕见的自身免疫疾病,该病主要影响儿童,最终会导致癫痫症发作,由于这种疾病对药物疗法具有耐受性,因此患者需要经常进行外科手术来移除或切断受影响的大脑组织。图片来源:Doron Merkler/UNIGE近日,一项刊登在国际杂志Cell上的研究报告中,来自日内瓦大学等机构的科学家们通

2018-09-02

首次揭示大脑血清素系统至少由两组血清素能神经元亚群组成

2018年8月29日/生物谷BIOON/---化学信使分子血清素(serotonin,也称作5-羟色胺)与从情绪到运动调节的一切相关。但是迄今为止,人们还远未明确血清素对哺乳动物大脑的影响。科学家们给出了不同的结果。一些人发现血清素能促进快乐。另一些发现它增加焦虑的同时抑制运动,而其他人持相反的观点。在一项新的研究中,来自美国斯坦福大学的Liqun Luo教授及其团队着重关注脑干中的一个被称作中缝

2018-08-29

Nat Biotechnol:中美科学家开发新技术让神经元交流可视化

2018年8月25日讯 /生物谷BIOON /——神经递质乙酰胆碱(acetylcholine, ACh)调节着全身一系列生理过程。尽管它很重要,但是科学家们对大部分组织和器官的胆碱能传输过程却知之甚少,主要是由于缺少可用的监控Ach的技术。图片来源:Nature Biotechnology而近日来自清华大学、弗吉尼亚大学等单位的科学家们就开发出了一类基于G蛋白偶联受体的Ach传感器(GACh),

2018-08-25

两篇Science揭示相分离的神奇功能---让神经元作好准备,让免疫系统保持平衡

2018年8月25日/生物谷BIOON/---在细胞内部,DNA紧密地堆积在细胞核中,刚性的蛋白保持复杂的运输系统在运转,一些分子有更简单的方法来建立秩序。它们能够自我组装,在拥挤的空间中找到彼此,并快速地凝聚成液滴(droplet),就水中的油那样。如今,来自美国霍华德休斯医学研究所(HHMI)的研究人员证实这些液滴并不仅仅是保持细胞内部的整洁。在第一项研究中,HHMI研究员Pietro De

2018-08-25